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Abstract

As a general approach to procedural mesh definition we propose
two mechanisms for mesh modification: generalized subdivision
and rule based mesh growing. In standard subdivision, a specific
subdivision rule is applied to a mesh to get a succession of meshes
converging to a limit surface. A generalized approach allows dif-
ferent subdivision rules at each level of the subdivision process. By
limiting the variations introduced at each level, convergence can be
ensured; however in a number of cases it may be of advantage to
exploit the expressivity of different subdivision steps at each level,
without imposing any limits. Rule based mesh growing is an ex-
tension of L-systems to not only work on symbols, but connected
symbols, representing faces in a mesh. This mechanism allows the
controlled introduction of more complex geometry in places where
it is needed to model fine details. Using both these mechanisms in
combination we demonstrate, that a great variety of complex ob-
jects can be easily modeled and compactly represented.
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1 Introduction

Complex objects which exhibit different features at different res-
olution levels are difficult to model and render with conventional,
manual modeling techniques. In order to facilitate such tasks it is
necessary to resort to procedural modeling. Currently three dif-
ferent developments concentrate on different aspects of procedural
generation of models:

� Subdivision surfaces: a sequence of subdivision steps applied
to a base mesh generates a series of meshes that converges to a
limit surface. The objective of this development is to generate
smooth models with G1 or — even better — G2 continuity.

� Fractal surfaces: certain natural phenomena like terrains or
wrinkled tissues can be nicely described by recursively adding
random displacements to the vertices in a subdivision scheme.
The goal of this development is to generate randomized mod-
els based on the variations that appear at different levels of
resolution.

� Parametric L-systems: plants and other branching structures
are best described by a procedural definition that emulates the
growing process of a biological system. Here the goal is to
develop rule systems that mimic the behaviour of real plants.

In order to generate models of plants, terrains, and other natural
phenomena that are convincing at all different scales, we introduce
a combination of these three developments which makes it possible
to choose which of them should be used at each level of resolu-
tion. Since the whole description of such multi-resolution models
is procedural, their representation of such models is very compact
and can be exploited by level-of-detail renderers that only generate
surface detail where it is visible.

After giving an overview of the previous work in section 2, we
will introduce a generalized view of the subdivision process that in-
cludes fractal surfaces in section 3, a new application for L-Systems
in section 4, and a combination of these two techniques in section
5. Section 6 details the rendering techniques that were used, and
Section 7 contains some results of this combination.



2 Previous Work

Mesh subdivision is a technique for generating smooth surfaces that
has been introduced quite some time ago by Catmull and Clark [3]
and Doo and Sabin [9]. For a long time the theoretical foundation
of the subdivision process was not as thorough as for other mod-
eling techniques such as BSplines and NURBS, and thus it took a
while for subdivision methods to become widely known and used.
Recently this has been rectified by the introduction of a method to
evaluate subdivision surfaces at any point [22], a method for ex-
tending subdivision surfaces for emulating NURBS [21], the ad-
dition of normal control to subdivision surfaces [1], and a method
to closely approximate Catmull-Clark subdivision surfaces using
BSPline patches [19]. A number of other extensions to subdivision
surfaces [7], [14], [15] have established them as the modeling tool
of choice for generating topologically complex, smooth surfaces.

While the main goal of most subdivision surface techniques is
the use of recursive refinement to obtain smooth surfaces, the field
of procedural modeling uses various similar principles to add detail
to surfaces at different levels of resolution. One example for such a
procedural modeling strategy is the generation of fractal surfaces by
adding random variations at each level of recursive refinement [10],
[23]. These surfaces have been demonstrated to be very useful for
modeling natural phenomena like terrains [18] and other complex
geometry.

In order to generate more complex objects with branching struc-
tures, like trees and other plants, another kind of procedural mod-
eling strategy had to be used. Lindenmeyer introduced string-
rewriting systems [16], later called L-systems, that are useful for
describing biological processes. In order to generate realistically
looking plants Prusinkiewicz et al. [20] associated parametrized
geometry to the symbols in these L-systems.

By extending this to so-called open PL-systems [17] that interact
with an environment, Měch and Prusinkiewicz were able to simu-
late the appearance of various plants and their reactions to envi-
ronmental influences. A set of rules that can be used to generate
models of a number of different tree species were presented by We-
ber and Penn [24]. Efficient methods for ray-tracing such systems
were introduced by Gervautz and Traxler [11].

3 Generalized subdivision

The standard subdivision process starts out with a mesh M(0) com-
posed of vertices, edges, and faces that is the base for a sequence of
refined meshes M(0), M (1), M (2), ... which converges to a limit
surface, called the subdivision surface.

The process for generating submesh M(n+1) of a specific mesh
M (n) in the sequence can be split up into two operations. The first
operation, which we will call mesh refinement, is the logical intro-
duction of all the vertices in the submesh. This operation yields all
the connectivity information for the vertices of the submesh with-
out specifying the positions of these newly introduced vertices. The
second operation, which we will call vertex placement, is the calcu-
lation of the actual vertex positions. Standard subdivision schemes
use specific rules for generating the new vertex positions, that en-
sure that the limit surface of the subdivision process satisfies certain
continuity constraints, e.g. G1 or G2 continuity.

In order to break these continuity constraints at user specified lo-
cations, different rules for vertex placement have been introduced
[7], that maintain discontinuities at user specified edges. These
rules fix the location of edge vertices in place for a user-specified
number of subdivision steps. Thus this number can be viewed as a
measure of edge-sharpness.

From a more general viewpoint, fractal surfaces [10] can be
viewed as a type of subdivision surface where the vertex placement

rules at each subdivision step have been chosen to maintain only
G0 continuity.

In order to obtain maximum flexibility in generating subdivision
surfaces, we propose to separate the two operations of mesh refine-
ment and vertex placement, and make it possible for the user to
independently specify both of these operations.

Mesh refinement

As the mesh refinement operation generates the connectivity infor-
mation for the submesh, it determines if the subdivision process
generates quadrilateral meshes, such as Catmull-Clark subdivision,
or triangular meshes such as Doo-Sabin or

p
3-Subdivison [14]. In

order to demonstrate the viability of our new approach, we imple-
mented mesh refinement based on Catmull-Clark subdivision (see
figure 1).

Figure 1: A subdivision step in the Catmull-Clark subdivision
scheme.

Vertex placement

Standard vertex placement rules consist of taking weighted aver-
ages of the vertex positions of mesh M(n) in order to calculate the
vertex positions of mesh M(n+1). For standard subdivision sur-
faces these rules have been designed to smooth the cusps and edges
of the input mesh M(0). Although this is desirable in a number of
situations, we want to add more flexibility in the rules for vertex
placement.

In order to introduce variations at any point in the subdivision
process, we introduce two geometric properties that can be used to
specify a vertex placement rule at each subdivision level. The first
of these properties, the local normal vector, is an approximation of
the surface normal of mesh M(n+1) at a given vertex. This is calcu-
lated as the average normal of all faces meeting in the vertex under
consideration. The second property is the local scale factor of the
surface, a scalar indicating the average face size at each vertex of a
mesh in the sequence. This can be computed as the average diago-
nal length of all faces meeting at the vertex, and is provided in order
to facilitate multi-resolution specification of these displacements.

By using these two properties, it is possible to specify a vertex
placement rule, by an equation similar to a procedural texturing
rule. Instead of a colour at each position in space, we generate
a displacement vector for each vertex in a mesh. If these displace-
ment vectors are chosen to be colinear with the local normal vectors
at each vertex position, the resulting vertex placement rule can be
viewed as a generalized form of displacement mapping [5], [6].

As an example (see figure 2), if random displacements in the
direction of the local normal vector are added to the vertices of
a surface, and the size of the displacements is proportional to the
local scale factor, the resulting surface will be a fractal with the



Figure 2: A few subdivision steps using a fractal displacement rule
with 1=f characteristic.

standard 1=f frequency characteristic. This example however, uses
the same rule at each level of the subdivision process.

Alternating between different vertex placement
rules

By specifying different vertex placement rules at different resolu-
tion levels, it now becomes possible to model a desired surface in
a true multi-resolution fashion. At each scale of the model differ-
ent variations can be introduced in order to approximate the desired
result. This is similar to normal meshes [12] and displaced subdi-
vision surfaces [15], but our scheme is a generalization as there is
no limitation on the type of rules that can be used at each resolu-
tion level. A drawback is, that we cannot automatically generate
the rules at each level to approximate a given shape.

The two properties of the local normal vector and local scale fac-
tor are provided, in order to facilitate simple and easily specifyable
changes. It is also possible to add variations to the vertex place-
ment rules, without regard to these properties. Using the fractal
surface as an example again, instead of moving the vertices in the
direction of the local normal vector, all vertex movements could be
performed into the same global direction. In this way it is possible
to generate a fractal height field.

The process so far makes it possible to modify the vertex po-
sitions at each level of subdivision either in a globally chosen di-
rection, or locally in the direction of an estimated normal vector.
Sometimes it may be necessary to change the position of a ver-
tex locally not only in the direction of the normal vector, but with
respect to a local coordinate frame. For this purpose, a similar con-
cept to frame-mapping [13] can be employed (see figure 3).
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Figure 3: The local coordinate frame at a vertex.

This allows the modification of the vertex position at each sub-
division level, both in the direction of the local normal vector, and
along the local tangent plane. Figure 4 shows an example of shifting
the vertex position along a vector within the local tangent plane.

Figure 4: Shifting the vertex positions inside the tangent plane.

As long as the modified subdivision rules are only used a finite
number of times, with the rest of the rules being applications of the
standard smoothing rules, the algorithms for evaluation of subdivi-
sion surfaces at any point [22] can still be used. An example for
such a model is the chair in figure 11: at a certain subdivision level
random vertex displacements were added to simulate the folds in
the cushion, but it is still possible to calculate the exact limit sur-
face, as all subsequent subdivision steps are just standard Catmull-
Clark steps.

If the introduced vertex displacements are always bounded by
the local scale factor, the resulting surface is a fractal surface which
can be approximated by terminating the subdivision process after a
finite number of steps (for smooth surfaces, additional constraints
have to be met [4]). The resulting error in vertex positions is on the
order of the local scale factor. In this case the resulting surface is
only G0 continuous, and there is no good way of approximating the
normal vector of the surface. Such surfaces are however still valu-
able modeling primitives, as there are a number of natural phenom-
ena, e.g. terrains and wrinkled tissues, which can be approximated
by such 1=f fractal surfaces.

4 Rule based mesh growing

Although the generalized subdivision method introduced in the pre-
vious section is a very powerful modeling tool, the resulting meshes
will always have the same mesh-connectivity except at a small num-
ber of extraordinary vertices that were present in the original mesh.
As an example, if Catmull-Clark subdivision is used, each mesh
in the subdivision sequence will always be composed of quadrilat-
erals. Introducing local variations can then only be performed by
locally expanding the subdivision mesh. This can lead to arbitrarily
large distortions in the quadrilaterals.

If some vertices are shifted by large vectors (considerably longer
than the local scale factor), and all other vertices are left unchanged,
the four quadrilaterals meeting in that one vertex will be severely
distorted (see figure 5). The resulting texture coordinate space of
the affected vertices is severely stretched, which can lead to prob-
lems in such applications as texture mapping and finite-element
methods like radiosity. In order to overcome this deficiency, we
will introduce rule based mesh growing.

Parametric L-systems

L-systems [16] are defined by of a number of symbols that repre-
sent components of a plant, and a set of rules giving a string of
replacement symbols for each of the available symbols. In order to
simulate a biological system, a start symbol is taken, and in each re-
placement step, all symbols are transformed according to the given



Figure 5: Shifting a vertex by a large vector gives rise to severely
distorted faces.

rules. Thus the start symbol can be thought of as a seed, and the
ruleset encodes the growth of the plant.

In order to generate three-dimensional models, L-systems have
been extended by three significant concepts [20]:

� Parametrized symbols: for placing the parts of a plant in space
and generating parts of different sizes, it is necessary to asso-
ciate parameters with each symbol, that encode the properties
of each part of a plant.

� Parametrized rule expansion: in order to modify the parame-
ters, it is necessary to calculate new values for the parameters
at each rule expansion step. These calculations are associated
with each expansion rule.

� Encoding of a hierarchical structure: L-systems only operate
on one-dimensional strings. In order to represent hierarchical
structures, such as trees, it is necessary to introduce grouping
symbols. With these symbols it is possible to encode branch-
ing structures.

Mesh-based PL-systems

In order to use parametrized L-systems in the context of a mesh-
based modeling system, we introduce mesh-based PL-systems by
associating each parametrized symbol of the system with a face in
a mesh. Thus the right-hand side of each production rule is not
a linear sequence of symbols, but a template mesh with each face
representing a symbol.

Thereby the topological structure of an object generated with
such a mesh-based PL-system is automatically encoded in the con-
nectivity information of the mesh, and we do not need to introduce
grouping symbols in order to encode the hierarchical structure.

It is also very easy to avoid producing degenerate meshes that
contain T-vertices, or malformed faces: if the template meshes con-
tained in the rules are well-formed, they will not introduce any de-
generacies into the growing mesh.

Figure 6 demonstrates such a mesh-based PL-system. Each rule
in such a system consists of a symbol associated with a face and
a replacement mesh, where each face is again associated with a
symbol. In our example in figure 6 the replacement geometry is
either a cube-shaped mesh (in the first and third expansion step) or
a tent-shaped mesh (in the second expansion step).

In order to correctly attach the replacement geometry to the
growing mesh at the position of a face that is to be expanded, we
place a reference coordinate frame at the center of this face (see fig-
ure 7). The replacement geometry is specified as a complete mesh,
that will be attached to the growing mesh in such a way, that its first
face is aligned with this coordinate frame. During the growing pro-
cess the complete transformation from this local coordinate frame
to the global coordinate system is maintained, so that interaction

Figure 6: Mesh growing by associating a symbol with each face.
The dark-grey faces will be replaced in each growing step.

with an environment, such as tropism and gravity, can be specified
in the procedures of the parametric L-system.

Figure 7: The reference coordinate on a face that will be expanded.

Using this mesh growing procedure we implemented a PL-
system that incorporates the parametrized tree model developed
by Weber and Penn [24]. Figures 14 and 15 show two different
branches generated with this method.

5 Combining both techniques

Both presented techniques, generalized subdivision and rule based
mesh growing can be combined by using a rule based growing step
as an even more generalized subdivision rule. Strictly speaking,
no actual subdivision takes place, but since new geometry is intro-
duced there is some similarity between a normal subdivision step
and such a mesh growing step. Thus it is possible to alternate
between subdivision steps that use texturing functions for vertex
placement, and mesh growing steps that expand the geometry in
places where it is necessary to add more detail.

Using this combined scheme we can now generate complex ge-
ometry that uses the advantages of both of these schemes. As an
example, figure 8 shows a forking trunk of a tree.

The branching structure of the tree was modeled using a mesh
growing step. Afterwards a number of smoothing steps were used
to make the structure look more natural.

The resulting structure, although convincing in its overall form,
still lacks detail. A number of trees and plants have features like
ridges in the bark along the length of their branches. At such a
branching structure some of these ridges continue along one branch,
while some ridges continue along the other branch. In order to sim-
ulate such a structure it is necessary to assign texture coordinates
to each vertex in the original mesh in such a way that the following



Figure 8: Generating a branching structure of a tree by combining
both techniques.

subdivision process generates a smooth transition of these texture
coordinates.

We map the ridges of the bark onto the u-coordinate of our tex-
ture coordinate system. The v-coordinate is just mapped linearly
along the length of the branch, splitting at each fork. At each point
where a vertex is shared by the expansion of two separate symbols
(faces), the texture coordinate for this vertex is taken to be just the
average of the texture coordinates generated by each of the expan-
sions. As an example, figure 9 shows all the u-coordinates of the
vertices in the original mesh of a forking branch.
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Figure 9: u-coordinates at a forking branch: u1 = 0:0+0:5
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As one can see, the main trunk starts out with two reflected cy-
cles of the u-coordinate, and each of the branches ends up having
two reflected cycles as well. At the fork, the coordinates at most

vertices agree, except at the two vertices denoted u1 and u2 in fig-
ure 9. At first glance, this assignment of texture coordinates seems
to be somewhat arbitrary, but it was carefully chosen to generate a
grooving structure that mimics what happens in nature.

In figure 10 these texture coordinates were used to modulate the
displacement in the vertex placement step of the following subdivi-
sion steps. The left image shows the unmodified groove structure,
in the right image, some random displacement of the ridges was
added to obtain a more natural look.

Figure 10: Ridges generated by using the described texture coordi-
nates as parameters in a vertex placement rule.

Although this scheme for assigning texture coordinates is some-
what limited, it is still suited for some natural phenomena. It is
however foreseeable that some more elaborate methods for assign-
ing texture coordinates (maybe similar to those developed by Bloo-
menthal [2]) need to be devised to cover all the possible surface
structures that can be found in nature.

6 Rendering

All the methods for generating the generalized subdivision meshes,
and for growing meshes have been implemented in a photorealistic
renderer based on ray-tracing. Currently the renderer expands all
meshes before starting to render the images, however this is not an
inherent limitation of our new method. In order to be able to ren-
der more complex scenes with our renderer we are working on a
caching scheme that only expands the subdivision surfaces in those
places where they are visible, only to that extent, that the geome-
try can be approximated well enough. Optimally a modeler such
as the one by Deussen and Lintermann [8] could be modified to di-
rectly export our compact representation, thus making it possible to
represent even very complex plants within a few kilobytes.

Based on the structure of our generalized subdivision scheme, it
is possible to implement levels-of-detail for rendering in two ways:
subdivision steps that generate fine detail can be omitted in order to
generate simpler models, but it is also feasible to modify the mesh-
growing steps to omit generating parts of the geometry that would
lead to aliasing if seen from afar. As an example for this, consider
the spikes of the cactus in figure 12. These could be omitted alto-
gether for simpler models of the same object.

Although renderer is based on ray-tracing and thus rather slow,
the expansion of the subdivision meshes takes only a fraction of the
rendering time (i.e. less than a second); rendering times were on
the order of about one hour for the image of the bush in figure 15.



7 Results

We used the new methods for generating a number of complex mod-
els. The chair in figure 11 demonstrates the use of a random ver-
tex displacement in order to model the folds of the cushion. The
cactus on the first page and in figure 12 has been grown with a
simple L-system, and after some smooth subdivision steps, another
mesh growing step was used to generate the spikes. The forking
branch (figure 13) shows the ridges that have been generated with
our scheme of assigning texture coordinates. While figures 14 and
15 demonstrates the use of our system for trees, the wrought-iron
candle-holder (figure 16) shows that it is not limited to vegetation
scenes (note the rust that has eaten into the iron).

Figure 11: A chair with folds in the cushion.

8 Conclusion and future work

A general approach for procedural mesh definition has been intro-
duced, which combines multiple techniques derived from subdivi-
sion surfaces to parametric L-systems. This combined approach
yields exceptional modeling power that we used to efficiently de-
fine highly complex geometry, such as trees and plants.

By implementing all these procedural mesh generation methods
inside the renderer, it is possible to define highly complex scenes
using as little as a few kilobytes. Although the actual renderer
used for producing the images in this paper generated the complete
meshes at each subdivision level, the proposed approach could be
used to generate all necessary geometry on the fly.

Figure 12: A cactus generated by alternating between growing and
subsivision steps.

We are currently working on a rendering system for both inter-
active and realistic rendering, that only generates these parts of the
geometry that are visible, and disposes of the mesh parts that have
already been rendered.
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