
Surface Models of Tube Trees

Petr Felkel
VRVis, Vienna, Austria

felkel@vrvis.at

Rainer Wegenkittl
VRVis, Vienna, Austria

wegenkittl@vrvis.at

Katja Bühler
VRVis, Vienna, Austria

buehler@vrvis.at

Abstract

This paper describes a new method for generating sur-
faces of branching tubular structures with given center-
lines and radii. As the centerlines are not straight lines,
the cross-sections are not parallel and well-known algo-
rithms for surface tiling from parallel cross-sections cannot
be used. Non-parallel cross-sections can be tiled by means
of the maximal-disc interpolation method; special meth-
ods for branching-structures modeling by means of convo-
lution surfaces produce excellent results, but these meth-
ods are more complex than our approach. The proposed
method tiles non-parallel circular cross-sections and con-
structs a topologically-correct surface mesh. The method is
not artifact-free, but it is fast and simple. The surface mesh
serves as a data representation of a vessel tree suitable for
real-time Virtual Reality operation planning and operation
support within a medical application. Proposed method ex-
tracts a “classical” polygonal representation, which can be
used in common surface-oriented graphic accelerators.

1. Introduction

This paper addresses the problem of generating a 2-
manifold surface mesh of branching structures defined by
central axis and radii. We apply this method in the prepa-
ration of surface models of liver vascular structures for Vir-
tual Reality (VR) operation planning and Augmented Re-
ality inter-operative support. The vessel tree is found in a
pre-processing step by a vessel-tracking algorithm [11].

There are many algorithms for direct surface reconstruc-
tion from 3D datasets. The Marching Cubes approach [14]
is useful for surfaces that can be defined by a threshold
value. Deformable model approaches are applicable for
more complex objects, performing the iterative reconstruc-
tion using balloons [13], simplex meshes [6], or level set
methods [15], but with substantially higher time demands.
We have chosen the surface reconstruction method from
cross-sections, as it is simple, fast, and the cross-sections
are already available.

Surface tiling from cross-sections has been intensively
studied from the 1970’s [12, 16]. There are well-known
algorithms for reconstruction from parallel cross-sections
of nearly any shape and any branching type [5, 17]. The
input of the surface tiling algorithm is in our case formed
by convex-shaped (circular) cross-sections, but these cross-
sections are not parallel. They are distributed along a tree-
shaped vessel centerline. If smooth transitions of the sur-
face at joints are not desired, the tiling is simple via approx-
imation by a zig-zag triangular pattern [20] or directly by
generalized cylinders [10]. Both approaches are applicable
if only one single tube segment is reconstructed [20], or if a
surface of branching structures is constructed and a separate
mesh created for each branching segment [10]. The ends of
segments then intersect at the branching point.

An algorithm for constructing a surface from non-
parallel cross-sections of an object was published by Treece
et. al [19]. It uses a shape-based interpolation guided by
maximal discs for real-time visualization of free-hand ul-
trasound. Previous work was done by Payne and Toga [18].
Two specialized algorithms for surface reconstruction of
natural branching tree-like structures have been published
by Bloomenthal. One used free form surfaces [3] for re-
construction of smooth transition surface in ”ramiforms”,
another used convolution surfaces (form of implicit func-
tions) for bulge-free blending in the branches [4]. The lat-
ter method generates the best surface approximation, but is
rather complex.

We have developed a simpler recursive algorithm for sur-
face construction of the branching tubular structures.

2. The mesh generator

The proposed algorithm uses generalized cylinders along
the segments and constructs a transition surface at the joints.
The algorithm solves n-furcations (n-times branching) and
constructs a single 2-manifold mesh. The presented ap-
proach handles multiple branching in a unified way.

The algorithm uses a new recursive branching-
construction procedure to construct an intermediate base
mesh from the input vessel tree. This mesh serves as an in-



put to a well-known piecewise smooth subdivision surface
generator based on the Catmull-Clark subdivision [7, 2],
which produces a smooth vessel surface. We use the SUB-
DIVIDE 2.0 library for this purpose [2]. After subdivision of
the base mesh we get a smooth surface, used for fast render-
ing in an augmented reality added surgery application [1].

2.1. Input data

The mesh generator presumes the input in the form of
the vessel-centerline tree. The tree has the following struc-
ture (see Fig. 1 with an image of a simple branching ves-
sel together with the tree data-structure): The tree nodes
are located in the vessel start (root), in the branching points
(joints) and in the end points (leaves).

Figure 1. Vessel tree and its representation

Each node stores the incoming segment as a list of circu-
lar cross-sections with measured radii. The central vertices
of the cross-sections lie on the center-path from the previ-
ous node to this node and the cross-sections are perpendic-
ular to the center-path.

Center-paths of incident segments redundantly store the
joint cross-section. The simplification of the vessel cross-
section to a circular shape is sufficient in this case, as the
aim is a 3D visualization of the general run of the vessels.

Each pair of subsequent cross-sections forms a segment
slab (see Fig. 1). The branching tree-segments are repre-
sented by links to the successive (child) nodes, and the joint
is formed as the unification of the child-slabs.

In a preprocessing step, the segment centerline vertices
(delivered in sub-pixel precision by the segmentation algo-
rithm [9, 11]) are down-sampled to a lower resolution, such
that the centerline vertex distance is comparable to the ves-
sel diameter in the neighborhood. This yields a smoother
input centerline and lower density of the generated mesh at
an acceptable precision level.

2.2. Derived data

The input tree representation by centerlines and radii is
compact. As the tiling algorithm also uses a derived infor-
mation repeatedly, it is pre-computed in a pre-processing

step. This derived information includes (definitions and de-
tails follow in this Section):

• Directions ~diri of slabs and normals ~ni of the cross-
section planes along segment centerline,

• average normals ~n
avg
0 of all cross-section planes n0 in

the joints,

• classification of the child segments into so-called for-
ward and backward classes, and

• selection of the straightest forward child segment.

Computation of the slab directions ~diri and cross-section
normals ~ni is straightforward (see Section 2.2.1), for com-
putation of the average normal ~n

avg
0 in the joints (Sec-

tion 2.2.2) and for subsequent classification of forward and
backward segments, a heuristic is applied (Section 2.2.3).
Various criteria can be applied for the straightest seg-
ment selection preferring the desired vessel feature (Sec-
tion 2.2.4).

2.2.1. Directions and normals along a segment. Slab i

is between the cross-sections with indices i and i + 1, and
the slab direction ~diri is equal to the direction of the cross-
section i. The computation of the slab directions ~diri and
cross-section plane normals ~ni along the segments is per-
formed separately for each segment (see Fig. 2, where the
vectors along the centerline P0, P1, . . . , Pn−1 of one seg-
ment are shown). Vectors ~diri and ~ni are positioned in the
appropriate point Pi, with index i along the segment.

Figure 2. Directions and normals along the
isolated segment

The directions ~diri of slab (Pi, Pi+1) are computed as
normalized differences of the centerline points Pi (1).

~diri = norm(Pi+1 − Pi), i = 0, . . . , n−2

~dirn−1 = ~dirn−2, (1)

where the function norm() represents a vector normaliza-
tion, which scales a vector to unit length. It is defined as
norm(~v) = ~v

|~v| . The normals ~ni of the cross-section planes
along the tree segment are computed according to (2) (see
also Fig. 2).



~n0 = ~dir0

~ni = norm( ~diri−1 + ~diri) i = 1, . . . , n−2

~nn−1 = ~dirn−1 (2)

2.2.2. Joining of normals at joints. To enhance the
smoothness of the generated surface at the joints, the com-
mon average cross-section plane is computed for all partic-
ipating segments. The computed normal vector ~n

avg
0 of the

average plane replaces the stored normal in the last vertex
of the incoming segment and the normals in the first vertices
of the outgoing child segments.

In the following text, ~nin represents the last normal of
the incoming segment, i.e., ~nin = ~nn−1 of the incoming
segment, where ~nn−1 is defined according to (2). Super-
script index j represents the index of the child segment.
The first cross-section planes of the followers take part in
the n

avg
0 computation. n

j
0 represents the normal of the first

cross-section plane of the j-th child segment.
The common normal vector ~n

avg
0 is computed by means

of the heuristic, as an “average” normal of the branching
segment normals. To avoid unpredictable changes of the
normal direction, only the “positive” normals are averaged.
The decision positive/negative is based on the sign of the dot
product with incoming segment normal ~nin. The normals
whose included angle to the incoming segment normal ~nin

is less than 90◦ are classified as positive, the remaining as
negative.

An example of the average normal ~navg
0 computation can

be found in Fig. 3, caption i), where six branches are outgo-
ing from the joint. The normals ~n1

0 and ~n3
0 are not used for

the computation as they belong to the negatives (their in-
cluded angle to the incoming segment normal ~nin is greater
than 90◦). The normal ~n5

0 takes part in the ~n
avg
0 computa-

tion, ~navg
0 = average of (~nin, ~n2

0, ~n
4
0, ~n

0
0, and ~n5

0).

2.2.3. Forward and backward segments. The average
plane defined by the average normal ~n

avg
0 splits the outgo-

ing vessels into two groups, called backward and forward
(see an example in Fig. 3, caption ii). They are handled
separately, as will be discussed in steps 2a and 2b of the
TileTree() procedure in Section 2.3.1. For an illustra-
tion of the role of forward and backward segments in the
tiling process, see Figures 4 and 5.

In the example in Fig. 3, after the computation of the
average normal ~n

avg
0 , the positive segment with normal ~n5

0

together with negative segments (~n1
0, ~n

3
0) will belong to the

segments directed backward in relation to the average plane.
The segments with normals ~n2

0, ~n
4
0, ~n

0
0 will belong to the

forward group.

Figure 3. The normals ~n
j
0 at starts of branch-

ing segments are classified twice: i) into pos-
itives and negatives, according to the angle to
incoming normal ~nin and ii) into forward and back-
ward normals, according to the angle to the
average normal ~n

avg
0 . The superscript index j

represents the index of segment in the array
of branching child-nodes, the zero subscript
index the first layer of the segment

2.2.4. Straightest segment selection. The straightest seg-
ment is one of the forward segments. It has a privileged
position, as the remaining forward segments are tiled to it
(see Fig. 4).

The straightest segment is selected as a forward segment
with the direction ~dir0 most similar to the direction of the
average normal plane ~n

avg
0 . In Fig. 3, it is the segment with

the superscript index 0 (its normal ~n0
0 = ~dir0, before being

replaced by the average normal ~n
avg
0 ).

If different vessel features are preferred for the algorithm
other than strightness, other criteria for the straightest seg-
ment can be applied, such as the child vessel diameter or the
vessel-sub-tree size (height or number of nodes).

Figure 4. Tiling the forward segments



Figure 5. Tiling the backward segment

2.3 The tiling algorithm

As mentioned above, the algorithm first constructs a
rough base mesh and then performs a Catmull-Clark sub-
division scheme to achieve a surface of desired quality. The
generated surface patches are quadrilaterals, as defined by
the Catmull-Clark subdivision scheme [7].

The input circular cross-sections are approximated by
described squares during the base mesh generation (see
Fig. 6). Four vertices V0, V1, V2, V3 of each such square-
shaped cross-section approximation are fully defined by
equal quadrants, originated in the cross-section center,
where the vertex V0 is in the direction of the ~up vector.
Propagation of the ~up vectors along the segments and in
the tree joints is described in Section 2.3.4.

Figure 6. Circular cross-section and vertices
inserted into the mesh. V0 (in direction of the
up-vector) defines the quadrants (0, I, II, III)

The base mesh generation is done recursively, re-
specting the recursive structure of the input vessel-tree
data. The recursion is in the highest level handled by a
TileTree(), and in the lower level by TileJoint()
and TileTrivially() routines. TileTree() pro-
cesses one tree segment and its followers, TileJoint()
constructs the surface in the branching node, and
TileTrivially() handles the straight, non-branching
parts of the tree. These routines are described below.

2.3.1. Surface generation for one segment. The
TileTree(S) controls the process of the tree surface gen-
eration starting in segment S. It is executed recursively for
each segment of the tree, starting in the root node. It han-
dles the straight tubular parts of the segment and the joining
surface parts separately by executingTileTrivially()

and TileJoint() routines, respectively.
For straight parts of the vessel tree (non-branching ves-

sels), it executes the TileTrivially() routine for each
slab, placing four surface quadrilateral patches into the base
mesh per one execution. Patches for the joint surface are
generated by executing the TileJoint() routine. Each
execution processes one child node and places one quadri-
lateral surface patch into the base mesh.

While processing the joints, the outgoing segments are
classified into forward and backward segments, according
to their outgoing direction (for details see Section 2.2.3).
Each execution of TileTree(S) consists of three tasks:

1. The tubular part of S is tiled from the second slab to
the slab preceding the last one by means of a simple
TileTrivially() procedure. It assumes, that the
first slab was already tiled in the previous steps.

2. The surface of the joint generated by means of the
TileJoint().

(a) First, the first slabs of the backward segments are
recursively connected to the last slab of S.

(b) Second, the straightest forward segment is se-
lected and the first slabs of the remaining for-
ward segments are recursively connected to its
first slab.

After this step, the surface mesh contains the first slabs
of the child segments of S.

3. Finally, TileTree() is recursively executed for all
backward and forward child segments of S.

2.3.2. Trivial tiling of one slab. The low-level sur-
face tiling procedures TileTrivially() and Tile-
Joint() work on the level of segment slabs, defined
between pairs of subsequent vessel cross-sections (as de-
scribed in Section 2.1). The TileTrivially(S, i) rou-
tine directly tiles one non-branching slab i of the segment S,
and outputs four quadrilateral patches, one patch for each
quadrant. The non-branching slab is the first slab of the root
segment. The slabs between joints, where the segments are
formed as single tubes, are also non-branching (Step 1 of
TileTree()).

2.3.3. Tiling of the joint surface. The recursive procedure
TileJoint(G,dir, from) is responsible for tiling the
surface of the joint in one “depth level” around the selected
segment slab. It forms the crucial step of the algorithm. The
generated patches can be classified into two types: A transi-
tion patch between a pair of branches, and a surface closing
patch. TileJoint() takes three parameters: the set of
child segments G to be connected in this level, the direction
dir of the processed slab, to which the set of segments G

will be tiled, and the quadrant number from, from which the
tiling was executed (for quadrant numbers see Fig. 6).



TileJoint(G,dir, from) handles these two tasks:
1. The segments in G are classified into subsets Qk ac-

cording to quadrants k. Quadrants are defined by the
~up vector in the processed cross-section.

2. The subsets Qk are processed in the quadrants, skip-
ping the quadrant in direction towards the caller
(k = {0, I, II, III} \ {from}):

(a) If the set of segments Qk waiting for tiling is
empty, the closing patch is created and the pro-
cedure returns.

(b) A segment C ∈ Qk closest to the currently tiled
segment is found by means of a maximal dot
product |dirOf(C) . dir | . dir

(c) C is removed from Qk.

(d) A transition patch is created to the segment C.

(e) Processing continues by tiling C:
TileJoint(Qk, dirOf(C), modify(k)).

The function modify(k) converts the quadrant number k

of the call to the quadrant the call came from.
For forward segments: modify(k) = (k + 2) modulo 4,

for backward segments: modify(k) = (5 − k) modulo 4.

The function dirOf(S ) returns direction ~dir0 of the
first slab of segment S.

To be more precise about the entire procedure, the
TileJoint() procedure takes four references to the gen-
erated mesh nodes of the tiled quadrant as its additional pa-
rameters. During the first execution, four mesh vertices re-
lated to the quadrant of the calling segment slab are used.
Later on, the selected mesh vertices belonging to different
segments are passed, reflecting the topology of the surface.

Tiling the surface of the joint is executed in Step 2 of
TileTree(), after classifying the outgoing segments
into forward and backward subsets. The first executions
in Step 2 of TileTree(), with quadrant number from
undefined, have the following shape:
2(a) TileJoint(backward, lastSecDir, undef), where

the lastSecDir represents the direction of the last slab
of the current incoming segment,

2(b) TileJoint(forward, straightestDir, undef), where
the straightestDir represents ~dir0 of the first slab of
the straightest segment in the forward subset.

An example of the tiling of three different situations is
shown in Fig 7, where the generated patches are drawn as
filled quadrilaterals. The closing patches are grey and the
transition ones are grey with a letter T in the center, pointing
to the recursively executed segment.

If the quadrant has no successors, the recursive proce-
dure TileJoint() tiles it directly by a closing quadrilat-
eral patch (Fig. 7a).

For each quadrant with successors (one in Fig. 7b and
two in Fig 7c) the closest branching segment C is found.

Figure 7. The principle of the recursive
branching procedure in one quadrant direc-
tion: a) straight-through segment without
branching, b) bifurcation, and c) trifurcation

As there is no other segment between the current segment
and the nearest segment C, they are directly connected by a
transition quadrilateral patch (T). The recursive procedure
TileJoint() is then executed for the remaining three
quadrants of the branching segment C, while the direction
of C is used as reference.

In Fig. 7b, the case with one branching segment (bifur-
cation) is shown. The recursive procedure TileJoint()
creates the transition quadrilateral patch (the top one), then
recursively executes itself in the remaining three directions.
As there are no following branches, each of the three quad-
rant directions is filled with a closing quadrilateral patch
(the front, back and bottom one in Fig. 7b).

In Fig. 7c, a trifurcation in one quadrant direction occurs.
The recursive executions of TileJoint() create the first
transition patch (top one in the left part of Fig. 7c) and
two closing quadrilateral patches (back and bottom ones)
equally as in the case in Fig. 7b. The quadrant of the front
quadrilateral has a successor (marked by X in the right part
of Fig. 7c). This successor is recursively connected to the
remaining front quadrilateral. The transition patch (in the
right part of Fig. 7c) is created directly, the remaining three
closing patches are created during the three successive exe-
cutions of TileJoint().

2.3.4. Up-vector propagation. To generate a minimally
twisted surface, the concept of propagation of so-called up-
vectors is used. The base mesh is generated by tiling the
square-shaped cross-sections and the up-vector points to
the vertex V0 of the square (see Fig. 6). By defining the
up-vectors as similarly as possible along the segments and
carefully rotating in the segment joints in the branches, the
squares in neighboring sections are mutually minimally ro-
tated and the surface is minimally twisted. Also the branch-
ing itself is simplified, since the edges of branch-squares are
mostly parallel to each other. For details refer to [8].

2.4. Operation and memory complexity

The amount of mesh vertices and quads generated by the
algorithm is first discussed, followed by the number of re-
cursive calls and the memory complexity. For details about
the derivation of the presented equations refer to [8].



Figure 8. Simulation of branching in the di-
rection of one quadrant used for tests. The
first row shows the base mesh, the second
row the surface after one subdivision step

2.4.1. Number of generated vertices and quads. Let n

be the number of processed segments, mi the number of
vertices of the down-sampled i-th segment centerline, V the
number of generated mesh vertices (mesh nodes), and Q the
number of generated quadrilaterals. Let S be the number of
the input slabs equal to the sum of slabs of the individual
input segments S =

∑n−1

i=0
(mi − 1).

In general, the number of generated vertices (mesh
nodes) is equal to V = 4(

∑n−1

i=0
mi − n + 1) = 4S + 4,

and the number of generated quadrilaterals lies between
Qmin = 4(

∑n−1

i=0
mi − 1) − (n − 2) = 4S − n + 2 and

Qmax = 4(
∑n−1

i=0
mi − 1) = 4S, where Qmin represents

the branching of n − 1 segments from one, and Qmax a
chain of consecutive segments.

2.4.2. Operation complexity. The number of operations
depends on the structure of the tree. As the number of
tree segments n is typically much smaller than the number
of input cross-sections S (n << S), the overall operation
complexity of the proposed tiling algorithm can be approx-
imated as O(S + n) = O(S).

2.4.3. Memory complexity. The algorithm stores the
down-sampled input tree with pre-processed directions and
normals, and the generated base mesh. This part of mem-
ory is fixed, given by the input, and can be approximated as
n(tree node size)+ (S + n)(tree vertex size) + Qmax(mesh
quad size)+V (mesh vertex size) = O(S).

The dynamically allocated temporary variables are used
in the recursion steps. The maximal recursive depth of
the tiling procedures TileTree() and TileJoint()
is O(n). Therefore, the overall memory complexity can be
approximated as O(S + n) = O(S).

Figure 9. Influence of the sampling step size
to the quality of the generated branch surface

3. Tests and results

Extensive testing on simulated datasets (see some of the
examples in Fig. 8 and 9) and on real data (see an example
in Fig. 10) were performed to test the algorithm qualities.

The 2-manifold property of the algorithm was verified by
simulating different versions of bifurcations, tri-furcations
and n-furcations in both directions of the branching seg-
ments (forward and backward) and with different amounts
of segments branching simultaneously from one quadrant.
For “natural” datasets with up to two branches in one seg-
ment, the generated surface also looks natural. If more seg-
ments branch from one quadrant, the surface in the joint
may shrink and narrowings appear.

The algorithm presumes consistent input, where no parts
of the centerlines overlap and where cross-sections and
parts of the separately reconstructed segment surface do not
intersect, aside from segment ends at joints.

In real vessel-tree datasets, if the joints are not precisely
located, the centerlines, which originate from the joints, can
overlap. Parts of the centerlines will then share the same
space between the wrong joint and the true branch. Inter-
section of the generated surface can be also caused by an
incorrect vessel diameter detection. But such cases would
be classified as errors of the data segmentation tool applied,
and would be assigned a low priority.

For the correctly-segmented data appropriate sampling
in the joints is necessary. The simulation of variations of
the cross-section sampling step size in the branching point
is shown in Fig. 9. The left panel in Fig. 9 shows a step
that is too small in relation to the tube diameter, the middle
panel an appropriate step, and the right panel a relative sam-
pling step that is too-large. Both problems are discussed in
Section 4 below.

To verify the number of vertices and patches of the gen-
erated mesh and the complexities derived in section 2.4, six
datasets with a different number of segments and with a dif-
ferent branching structure were measured (PC, Pentium III,
600MHz, WinNT, VC++6.0). The results are in Table 1



Figure 10. Example of a liver vessel-tree sur-
face (for greater clearity with differently col-
ored patches and a constant radius)

and Figs. 11 and 12. In the table, the input tree segments
are classified according to the joint topology: Chain is the
single follower, branch is the branching segment tiled to the
straightest segment. The table and both graphs show the lin-
ear complexity of the algorithm as derived in Section 2.4.2.

We closely cooperate with physicians, and they were sat-
isfied with the speed of the algorithm and with the quality
of the generated 3D mesh.

4. Discussion

The proposed method is simple, fast, memory efficient,
and produces a topologically correct surface mesh. The
mesh is “watertight”, which means there are no cracks or
holes in the surface. The application of subdivision surfaces
for this task is new.

The generated surface is smooth, and, thanks to the up-
vector propagation method, it contains minimum twists.
Twists can deform the surface, which can be misinterpreted
as vessel narrowings (false stenoses).

The reconstruction is sensitive to the input data. The
algorithm presumes non-overlapping cross-sections along
the vessel segments and in the places of joints (except for
where the segment starts and ends). The first property is
guaranteed in this application by the nature of the datasets
and by the preceding segmentation and down-sampling al-
gorithm. The second property can be achieved by a care-
fully designed pre-processing step. This preprocessing step
is under development, but in our case, the model is used for
navigation only and not for diagnostic purposes, and inac-
curate surface details do not cause a real problem.

The branching is sometimes enlarged, if the cross-
section sampling step is too big, which can be misinter-
preted as an aneurism (see the joints in the lower left part of
Fig. 10 and an example in the right panel in Fig. 9). Again,
this is not a severe problem in this case, as the model is not
used for diagnostic purposes, but for surgical navigation and
identification of the liver segments.

The resulting surface may self-intersect, if the constella-
tion of branching angle and the cross-section sampling step
is set incorrectly (see left panel in Fig. 9). This error can be
avoided by skipping cross-sections that would overlap. For
small outgoing angles, such cross-sections have the center-
lines’ distances less than the sum of their radii. As stated
above, this preprocessing step is under development and its
description will be published soon.

The 2-manifold property in the local vertex neighbor-
hood is given by the way the algorithm constructs a surface.
A patch for each edge is generated maximally twice (once
at the mesh border in the tree root and in the leaves). By
one processing step, the quadrilateral patch is either directly
created if no branching segment continues in the processed
direction, or the recursive call (in the appropriate quadrant
of a slab) joins the edge by a quadrilateral patch with the
branching segment.

5. Conclusions and future work

The algorithm presented here constructs a topologically
correct surface mesh of branching tubular structures (e.g. a
vessel tree) defined by their centerlines and radii. It handles
multiple branching via a new recursive tiling scheme. The
surface tiling is done in two steps: first, the “quadratic” base
mesh is generated. This mesh is then subdivided by means
of the Catmull-Clark subdivision scheme, which results in
a smooth, topologically correct 2-manifold mesh.

The generated mesh will be used in the Augmented Re-
ality Aided Surgery [1] system, developed in cooperation
with the BR1 research group in the VRVis Research Center
in Austria. Extended clinical tests will follow.

The input centerline is down-sampled to a lower reso-
lution. An adaptive sampling of the centerline according
to the local vessel curvature is still to be tested. The pre-
cise positioning of the branching points and modifications
of segment starts after the branching (skipping of cross-
sections) will also be addressed to avoid overlapping seg-
ment parts, causing the constructed surface to self-intersect.
Finally, we will compare our method with the convolution
surfaces [4].

6. Acknowledgments

This work was funded by the VRVis Research Center,
Vienna, and by TIANI Medgraph AG, Austria. The datasets
used for tests in this paper are courtesy of Dr. Erich Sorantin
and Dr. Georg Werkgartner, LKH Graz.

References

[1] ARAS–Augmented Reality Aided Surgery.
http://www.vrvis.at/br1/aras/.



Segments in the input tree Input tree Mesh Cals of Running
DS total classified (root excluded) vertices sections nodes patches Tile- time

n chain branch straightest
∑

n−1

i=0
mi S V Q Joint() [ms]

1 3 0 1 1 15 12 52 47 7 1.80
2 8 2 4 1 58 50 204 196 24 7.01
3 12 4 5 2 63 51 208 199 39 7.51
4 20 3 11 5 111 91 368 353 65 13.52
5 32 5 18 8 177 145 584 562 106 19.53
6 44 5 26 12 263 219 880 850 146 30.84

Table 1. Timings for input trees of different structure and size

Figure 11. Number of recursive executions of
TileJoint() in relation to the number of in-
put tree segments n

Figure 12. Running times of the mesh gener-
ation algorithm in relation to the number of
input tree slabs S

[2] H. Biermann and D. Zorin. Subdivide 2.0. Media Research
Lab, NYU, Feb. 2001.

[3] J. Bloomenthal. Modeling the Mighty Maple. In SIG-
GRAPH’85. Proceedings, pages 305–311, ACM Press 1985.

[4] J. Bloomenthal. Skeletal Design of Natural Forms. PhD
thesis, University of Calgary, 1995.

[5] J.-D. Boissonnat and B. Geiger. Three Dimensional Recon-
struction of Complex Shapes Based on the Delaunay Trian-
gulation. RR No 1697, INRIA, Sophia Antipolis, Apr. 1992.

[6] H. Delingette. General Object Reconstruction Based on
Simplex Meshes. Int. J. Comp. Vision, 32(2):111–146, 1999.

[7] T. DeRose, M. Kass, and T. Truong. Subdivision Surfaces
in Character Animation. In SIGGRAPH’1998, Proceedings,
pages 85–94, Orlando, Florida, 1998. ACM Press.

[8] P. Felkel, A. Kanitsar, A. L. Fuhrmann, and R. We-
genkittl. SMART—Surface Models from by Axis- and
Radius-defined Tubes. TR-VRVis-2002-008, VRVis Re-
search Center, Vienna, Austria, www.vrvis.at, 2002.

[9] P. Felkel, R. Wegenkittl, and A. Kanitsar. Vessel Tracking
in Peripheral CTA Datasets – An Overview. In R. Ďurikovič
and S. Czanner, editors, SCCG 2001. Proceedings., pages
232–239, Budmerice, Slovakia, 2001. IEEE Comp. Society.

[10] K. K. Hahn, B. Preim, D. Selle, and H.-O. Peitgen. Visu-
alization and Interaction Techniques for the Exploration of
Vascular Structures. In T. Ertl, K. Joy, and A. Varshney, edi-
tors, IEEE Visualization 2001, pages 395–402, 2001. IEEE.

[11] A. Kanitsar, R. Wegenkittl, P. Felkel, D. Fleischmann,
D. Sandner, and E. Gröller. CTA: A Case Study of Peripheral
Vessel Investigation. In T. Ertl, K. Joy, and A. Varshney, ed-
itors, IEEE Visualization 2001, pages 477–480, 2001. IEEE.

[12] E. Keppel. Approx. Complex Surfaces by Triangulation of
Contour Lines. IBM J. Res. and Devel., 19:2–11, 1975.

[13] H. M. Ladak, J. S. Milner, and S. D. A. Rapid 3D Segmen-
tation of the Carotid Bifurcation from Serial MR Images.
Journal of Biomechanical Engineering, 122:96–99, 2000.

[14] W. Lorensen and H. Cline. Marching Cubes: A High Reso-
lution 3D Surface Construction Algorithm. SIGGRAPH ’87.
Proceedings, pages 163–169, ACM Press 1987.

[15] R. Malladi and J. A. Sethian. Level Set Methods for Cur-
vature Flow, Image Enhancement, and Shape Recovery in
Medical Images. In Proceedings of Conference on Visual-
ization and Mathematics, pages 329–345. Berlin, Germany,
Springer-Verlag, Heidelberg, Germany, June 1995.

[16] D. Meyers, S. Skinner, and K. Sloan. Surfaces from Con-
tours. ACM Trans. on Graphics, 11(3):228–258, July 1992.

[17] J.-M. Oliva, M. Perrin, and S. Coquillart. 3D Reconstruction
of Complex Polyhedral Shapes from Contours using a Sim-
plified Generalized Voronoı̈ Diagram. Computer Graphics
Forum, 15(3):C–397–C–408, 1996.

[18] B. Payne and A. Toga. Surface Reconstruction by Multiaxial
Triangulation. IEEE CG&A, 14(6):28–35, Nov. 1994.

[19] G. M. Treece, R. W. Prager, A. H. Gee, and L. Berman. Sur-
face Interpolation from Sparse Cross-Sections Using Region
Correspondence. Technical Report CUED/F-INFENG/TR
342, Cambridge University, Dept. of Engineering, 1999.

[20] A. Wahle, S. C. Mitchell, S. D. Ramaswamy, K. B. Chan-
dran, and M. Sonka. Four-dimensional coronary morphol-
ogy and computational hemodynamics. In M. Sonka and
K. M. Hanson, editors, Medical Imaging 2001: Image Pro-
cessing, volume 4322, pages 743–754, Bellingham WA,
Feb. 2001. SPIE Proceedings.


