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Abstract
Circuit Neuroscience tries to solve one of the most challenging questions in biology: How does the brain work?
An important step towards an answer to this question is to gather detailed knowledge about the neuronal circuits
of the model organism Drosophila melanogaster. Geometric representations of neuronal objects of the Drosophila
are acquired using molecular genetic methods, confocal microscopy, non-rigid registration and segmentation.
These objects are integrated into a constantly growing common atlas. The comparison of new segmented neurons
to already known neurons is a frequent task which evolves with a growing amount of data into a bottleneck of the
knowledge discovery process. Thus, the exploration of the atlas by means of domain specific similarity measures
becomes a pressing need. To enable similarity based retrieval of neuronal objects we defined together with domain
experts tailored dissimilarity measures for each of the three typical neuronal sub structures cell body, projection,
arborization. The dissimilarity measure for composite neurons has been defined as domain specific combination
of the sub structure dissimilarities. According to domain experts the developed system has big advantages for all
tasks which involve extensive data exploration.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—, I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling —Curve, surface, solid, and object repre-
sentations, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling —Object hierarchies

1. Introduction

A mechanistic understanding of brain function must ulti-
mately be built upon a detailed account of how individual
neurons are organised into functional circuits, and how infor-
mation processing within these circuits generates perception
and behaviour. Genetic model organisms offer the possibil-
ity of applying powerful genetic methods to identify, charac-
terise, and manipulate specific neurons in the brain. In partic-
ular, Drosophila melanogaster, the fruit fly, has emerged as

one of the leading model systems for exploring how informa-
tion processing in defined neural circuits generates complex
behavioural patterns [OW08]. Central to these approaches
are methods to reproducibly label and identify cells of a
given type, and to construct digital atlases that ideally would
include representations of each neuronal type on a common
frame of reference. Molecular genetic methods make it pos-
sible to express transgenic markers in various neuronal sub-
sets. In some cases, individual types of neuron can be la-
belled in this manner, though more often multiple cell types
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are labelled in each brain. Neurons marked in this manner
can be visualized using confocal microscopy, resulting in
multi-channel volumetric images. To be able to combine im-
ages of different fruit flies, i.e. to overcome slight anatom-
ical variations and distortions and to provide a common
reference frame, all images are co-registered to a template
brain using non-linear registration [RM03]. Interesting neu-
ronal structures are segmented on the registered images and
their geometric representations are stored together with their
source images and other meta information in a database.

Given the number and diversity of neurons in the fly brain,
any systematic mapping of the individual cell types neces-
sarily involves the acquisition, registration, and analysis of
many thousands of images. Such constantly growing collec-
tions of interrelated spatial data build the basis for further
knowledge generation and reasoning, creating the need for
effective tools enabling the scientist to explore these large
data sets. One urgent need is for a method for efficient simi-
larity searches and 3D object retrieval, as well as robust mea-
sures for the classification of neuronal morphologies. Given
the representation of a specific type of neuron, or a com-
ponent thereof, the scientist frequently needs to interrogate
the entire database to identify other instances of the same
neuron, or distinct neuronal types that share some but not
all of its features. Such similarity measures can therefore
also form the basis for automatic classification systems that
could sort individual representations into distinct morpho-
logical classes.

We present a similarity based shape retrieval method tai-
lored to the specific requirements of neuronal structures in
the fly brain. The main contribution of this work is the
definition of appropriate similarity measures for neuronal
(sub-)structures. These methods should be equally applica-
ble to brain atlases for other species.

2. Related Work

Neuroscience is a data intense field requiring specialized
and scalable data management, data mining and exploration
methods. Data collections and studies in neuroscience are of-
ten inter subject, i.e. aim at fusing information from data re-
trieved from different individuals to a common atlas. A good
introduction to this specific kind of image and object data
collections and related challenges has been given by Van Es-
sen [Van02] and Hanchuang Peng [Pen08]. Van Essen de-
scribed the emerging role of databases and atlases for neu-
roscience research, while Hanchuang Peng listed the main
challenges of the new field of bioimage informatics as clus-
tering, classification, indexing and retrieval of the data base
contents.

Location or euclidean distance based search for neuronal
structures have been addressed by Bruckner et al. [BSG∗09].
They described a system which allows to retrieve neuronal
objects from an atlas by visual queries. The user marks a

location or object of interest with a brush gesture in space
and the system immediately returns a list of close (minimal
distance) or overlapping objects. A similar method for ex-
ploration of pathways and connectivity of neurons has been
presented by Lin et al. [LTW∗11]. The framework offers
a variety of tools which allow to combine several location
based queries to retrieve connected objects or to identify
neurons sharing the same pathways through the brain. Fly
Circuit [NB12] is a web based database for Drosophila im-
age and object data. It offers the possibility to search for neu-
rons or cell bodies by similarity. Similarity is defined either
by spatial distance in case of cell bodies or by a spatial dis-
tribution matrix in case of whole neurons. Non of the three
mentioned methods addresses a shape or similarity based
search of neurons.

A method for interactive exploration of neuronal path-
ways in diffusion tensor imaging (DTI) of the human brain
has been presented by Sherbody et al. [SAM∗05]. A set of
regions of interest can be interactively defined and manipu-
lated while the algorithm returns all fiber tracts connecting
these regions. Besides such manual exploration of fiber tract
data, clustering methods have been used to automatically
identify bundles of similar fibers. Similarity between fiber
tracts is often defined by their euclidean distance. Demiralp
and Laidlaw [Dem09] describe a weighted mean distance
metric which favors the middle section of the fiber tract and
use it for similarity coloring of fiber tract bundles. Moberts
et al. [MVvW05] evaluated different clustering methods and
reported that hierarchical clustering using single-link and
mean distance between fibers gives the best results. These
two methods explore the space of fiber tracts either by lo-
cation, distance or connectivity. Appearance or shape is not
directly considered.

A different approach is proposed by Scorcioni et al.
[SPA08]. Neurons are characterized by more then 40 dif-
ferent metrics which describe the morphology of the struc-
ture. However, it becomes apparent that morphology is a
very variable feature on our data. Algorithms which capture
similarity on our data must be able to cope with variable
morphology and partial matching shape.

Cardona et al. [CSA∗10] presented a method which
improves reconstruction of brain circuitry of the larval
Drosophila by automatically assigning neurons to their re-
spective lineages based on a shape based similarity measure
and can be therefore considered as closest to our work. Un-
known secondary axon tracts are automatically assigned to a
lineage by matching them to previously labeled correspond-
ing axon tracts. The proposed similarity measure for the tube
like axon tracts is based on the curve morphing method of
Jiang et al. [JBAK02] and relies on a combination of shape
similarity, mean euclidean distance and shape homogeneity.

Several general approaches for rigid and non-rigid shape
retrieval have been proposed. Their discussion goes beyond
the scope of this paper. For a detailed survey on shape re-
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Figure 1: Rendering of an neuron as it is stored in the fly
brain atlas. Blue = cell body, green = projection, brown =
arborizations.

Figure 2: Maximum intensity projections of volume image
data. Green channel: Fluorescence staining of neurons. Ma-
genta channel: Brain template. Left, basic image. Right, av-
eraged image based on five basic images.

trieval we refer to Tangelder and Veltkamp [TV07]. To the
best of our knowledge non of these methods has been ap-
plied up to now to realize a shape based retrieval method for
similar neurons.

3. Data and Methods

The nervous system of the Drosophila as in any invertebrate
organism consists mainly of unipolar neurons (for more in-
formations refer to [BH12]). This means that from a nerve
cell body only one process extends from it, which typically
later bifurcates into a dendritic branch and an axonal branch.
A typical example of a neuron as it is stored in the database
is depicted in Fig. 1.

The neuronal objects (cell bodies, projections and ar-
borizations) are segmented on co-registered confocal mi-
croscopy images of the brain (see figure 2 left). The volu-
metric image has a size of 420µm× 420µm× 165µm and is
sampled with a resolution of 768×768×165 voxels.

Cell bodies and arborizations are marked supervised us-
ing a region growing tool on averaged image data (see figure
2 right). The resulting binary masks are automatically con-
verted into triangle meshes for rendering and further pro-
cessing. Projections, semi-automatically traced [LCCC08],
are thin elongated tree-like structures which are represented
as skeleton graphs with radii.

The composition of one cell body, one projection and any
number of arborizations form a neuron. Each neuronal struc-
ture belongs to exactly one neuron, but a neuron stored in our
database is not necessarily complete, i.e. only a subset of the
three components might be available.

Since all structures are segmented based on co-registered
image data, the objects share a common reference frame and
form an atlas, i.e. they are directly comparable based on their
location in space. However the locational invariance under-
goes a significant uncertainty. This stems from an average
registration error ≈ 5µm and biological variability between
individual flies.

In the following we describe how dissimilarity between
neuronal structures is modelled (section 3.1, 3.2 and 3.3) and
how dissimilarity between whole neurons is defined (section
3.4).

3.1. Cell bodies

Cell bodies (soma) are blob-like structures located within
the cortex of the fly brain (see fig. 1 left). Shape and size
varies heavily on segmented data mainly because cell bod-
ies are floating structures on the cortex. Therefore, the shape,
gathered from averaged images captured from several genet-
ically identical flies, represents the density of the cell body
position.

The only discriminative feature of a cell body C is the lo-
cation in space. Therefore dissimilarity can simply be com-
puted using the euclidean distance between cell bodies cen-
ter of mass m(C) and we define the dissimilarity function for
two cell bodies Ca and Cb as follows:

Dc(Ca,Cb) = ‖m(Ca)−m(Cb)‖ (1)

3.2. Projections

Projections (axons and dendrites) are thin elongated tree-
like structures which are represented as skeleton graphs
with radii. Discussions with domain experts revealed that
the most characteristic features are location and shape,
whereas other morphological features (e.g. number/ location
of branches or terminals) are very variable and therefore mis-
leading. Furthermore direct pairwise similarity computation
is expected to be unrewarding and too expensive because of
the expected growth of data. Therefore the presented ap-
proach aims to characterize projections by a small set of
feature vectors which reflect the invariant properties of the
structure and enables fast dissimilarity computation.

The most descriptive feature of a projection in an atlas is
the position and shape of its traces. The morphology on the
other hand can be different between instances of the same
neuron. Therefore we transform a projection into a set of
feature vectors which describe the properties of subparts of
the skeleton graph, but ignore the morphology. Projection
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Figure 3: Transformation of a projection skeleton graph into
a set of feature vectors.

skeleton graph P is split in n non branching sub-traces pi.
The length |pi| of the traces is a parameter of the algorithm
and influences directly the number of feature vectors in the
set. For each trace pi a feature vector is assembled consisting
of two three dimensional vectors:

f(pi) = (m(pi);ωd ·d(pi)) (2)

where m(pi) denotes the center of mass of pi and vector
d(pi) = (di

x,d
i
y,d

i
z) denotes the main direction of trace pi.

In order to be invariant against point order of the traces we
demand that di

x ≥ 0. If this is not the case the alignment is
negated. m is normalized by dividing each component by
the corresponding extension of the base volume, the align-
ment vector is normalized to ‖d‖ = 1. The scalar ωd de-
notes a weighting parameter which defines the influence of
the alignment on the feature vector. The whole projection is
therefore described by a set of feature vectors:

F(P) = (f(p1); ...; f(pn)) (3)

Figure 3 shows an example where two different skele-
ton graphs should be compared. The comparison of both
corresponding feature vector sets is not straight forward as
the number of feature vectors varies and association be-
tween vectors is therefore undefined. Furthermore the dis-
tance measure should be able to detect partial matches.

Possible approaches to define a dissimilarity function for
projections are for instance the Bag of Words [LG09] and the
Bag of Features (BoF) [FSB09] algorithms. We propose to
use the Pyramid Match Kernel (PMK) [GD05] because we
found that a multi-scale method adapts better to the variabil-
ity of the domain specific data. The PMK method builds a
histogram pyramid over the feature space. The resolution of
each histogram starts by 1 for each dimension and is doubled
on every higher level. The pyramid match kernel K for the
feature vector sets Fa := F(Pa) and Fb := F(Pb) of projec-
tions Pa and Pb is computed as follows:

K(Fa,Fb) =
L

∑
k=0

1
2k Nk (4)

with

Ni = I(Hk(Fa),Hk(Fb))− I(Hk−1(Fa),Hk−1(Fb)) (5)

, where Hk denotes the histogram at level k and I is a func-
tion computing the overlap between histograms. Finally the
kernel function K is turned into the dissimilarity function:

Dp(Pa,Pb) = 1− 1√
c

K(Fa,Fb) (6)

where c = K(Fa,Fa) ·K(Fb,Fb) normalizes the similarity
value.

3.3. Arborizations

Arborizations are dense terminal branching structures which
enable neurons to intercommunicate. It is important to deter-
mine the similarity of arborizations to figure out if they cor-
respond to the same neurons. Similarity between arboriza-
tions can be defined by their shape. Because of the genera-
tion process similar arborizations tend to differ by small dis-
tortions or sometimes only parts are segmented. We decided
to use shape context because it benefits from being insensi-
tive to small distortions and is easy to compute, yet still has
a high accuracy. Originally proposed for 2D shape similar-
ity [BM02], the shape context has also been generalized for
3D shapes [MBM05].

For each vertex vi, i = 1..,n of the mesh representation
of an arborization A a coarse log-polar histograms Hi with
k = 1, ..., l bins of the connection vectors of vi with all other
vertices is computed. Thus, Hi describes implicitly the rela-
tive positions of all other vertices of the shape in respect to
vi.

Hi(k) = |{v ∈ A|v 6= vi; (v−vi) ∈ bin(k)}| (7)

The bins of the histograms Hi, i = 1, ...,n used for the
shape context of the shape are uniform in log-polar space to
make the descriptor more sensitive to near by sample points.
The shape context descriptor is translation and rotation-
invariant, and can be made scale-invariant by an additional
normalization step.

As arborizations consist out of up to 800.000 vertices, and
the runtime is dominated by the vertices, the general shape
context is not appropriate for our application. Moreover, as
sometimes only parts of arborizations are segmented, we
also have to solve the problem of partial matching. There-
fore, we propose to use the bag of features (BoF) based fast
pruning algorithm using shape context (shapemes) by Mori
et al. [MBM05].

To realize BoF we have to obtain a vocabulary of geomet-
ric words W = {w1, . . . ,wm} that is representative for the
full set of shape contexts of the known shapes. We use vec-
tor quantization through k-means clustering for our purpose.
The corresponding BoF histogram HW (A) will be obtained
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by counting the occurrences of the geometric words for the
shape A.

Because the relation between the words is lost using BoF,
we use a spatial-sensitive bag of features (SS-BoF) approach
by Bronstein et al. [BBG11] to improve the results. In the
case of SS-BoF, the frequency of word pairs fi j(A) for spa-
tial close shape context histograms of the shape A will be
used as feature descriptor. We use diffusion distance [Lin06]
to measure the spatial distance. The resulting feature de-
scriptor for the whole shape A is the m×m SS-BoF his-
togram F(A) = ( fi j(A)).

In order to additionally strengthen discriminative word
pairs, Bronstein et al. use the text retrieval inspired weight-
ing proposed by Sivic and Zisserman [SZ03]. Word pairs
with a high frequency are less discriminative then those with
low frequency, therefore spatially-close geometric words
will be weighted by their inverse document frequency

ωi j = log
(

N
ni j

)
(8)

where N is the number of objects in the database and ni j is
the number of occurences of the word pair (wi,w j) over all
objects.

In order to compute the dissimilarity function for two ar-
borizations Aa and Ab, we simply compute the L1 distance
between the weighted SS-BoF histogramsF(Aa) andF(Ab)

DA(Aa,Ab) =
m

∑
i=1

m

∑
j=1

ωi j | fi j(Aa)− fi j(Ab)| (9)

3.4. Neurons

As neurons comprise cell body, projection and arborizations,
similarity between neurons is defined by the similarity of
these components. Therefore, the similarity of each compo-
nent has to be computed and the result set of each component
has to be combined in a rank-aware manner to one single re-
sult set.

Rank-aware queries, also known as top-k queries [IBS08],
only retrieve the k objects that are highest ranked in the sub-
queries. For example, consider a top 5 similarity query on
flags to a query flag in terms of color and texture. The top-k
algorithm has to return those 5 flags that match best the cri-
teria of the user in short computation time and determine a
score value for each flag. An approach for fast processing of
complex queries consisting of several subqueries has been
presented by Güntzer et al. [GBK00] based on the approach
of Fagin [Fag96].

To answer similarity queries on neurons our application
has to return the top-k ranked neurons based on their sub-
queries. We use QuickCombine [GBK00] for fast subquery
combination based on an aggregating dissimilarity function.

The selection of a dissimilarity function D(X ,Y ) that

maps the distances of each of the subqueries to a single score
value is crucial for good results. As mentioned by Grosser et
al. [GDC00] using domain knowledge for selecting a proper
dissimilarity function improves the results of exploration al-
gorithms.

Determining similarity between two neurons Na and Nb
based on their anatomy is a multi-step procedure. Neuro-
biologists first evaluate the similarity of the projections of
the two neurons. If the projections are very similar it is very
likely that the neurons also share an anatomical structure. In
the next step, the similarity between the cell bodies and the
arborizations will be determined. If those structures are also
very similar it is very likely that both neurons are similar.
Moreover if one of the two stages respond with a low simi-
larity but the other with high similarity the neuron can still
be of interest for the researchers.

Therefore we propose a structure-sensitive dissimilarity
function between neuron Na = (Ca,Pa,A1

a, ...A
m
a ) and Nb =

(Cb,Pb,A
1
b, ...A

n
b).

DCA(Na,Nb) = ω
CDC(Ca,Cb)+

ω
A

n+m

m,n

∑
i, j

DA(Ai
a,A

j
b)

(10)

D(Na,Nb) =
√

ωP DP(Pa,Pb)DCA(Na,Nb) (11)

4. Evaluation

For evaluation we used the following parameters: Projec-
tion feature vectors are computed from 40µm long traces.
The weight of the alignment fraction is set to ωd = 0.2. The
shape context of arborizations is described by 4× 4× 8 (α,
β, radius) log-polar histograms. The vocabulary size is set
to m = 20 geometric words and therefore each arborization
is described by a 20× 20 SS-BoF. For neuron similarity we
used the following weighting parameters ω

C = 0.5, ω
P = 1.0

and ω
A = 1.0. Cell body similarity is weighted by 0.5 be-

cause it is less discriminative than the other parts of a neu-
ron.

Quantitative Evaluation: We asked the domain experts to
select retrieval classes for 50 randomly chosen query objects
from each of the projection, arborization and neuron collec-
tions. Cell bodies where not evaluated because dissimilarity
is in this case defined only by euclidean distance. Hence as-
sembling ground truth retrieval class would involve the def-
inition of a distance threshold which recreates the ranking
method and is therefore trivial.

The retrieval classes contain between one and 25 similar
instances. The retrieval result was scored based on the man-
ual composed ground truth data. Figure 4 shows the three
resulting recall vs. precision plots.

We received unexpected good results for neuron retrieval
which is due to the fact the experts selected just very few
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Figure 4: Recall vs. Precision plots for projection, arboriza-
tion and neuron retrieval.

neurons into the retrieval classes because of the high vari-
ability and the low number of currently available complete
neurons. Fortunately these neurons could be retrieved with
very high ranks. This demonstrates the performance of the
sub-structure dissimilarity models as well as composition
method. On the other hand the recall vs. precision curve of
projection retrieval has relatively low precision values to-
gether with high recall rates. Despite that the retrieval per-
formance is still sufficient, this shows that the emphasis for
similarity rating from the experts side goes beyond a pure ge-
ometrical definition, also knowledge about important path-
ways and anatomy plays a role.

Qualitative Evaluation. Domain experts evaluate the re-
trieval system and its performance in respect to the following
use case: the assignment of new and unknown sub-structures
(cell bodies, projections and arborizations) to already known
neurons. The task usually either requires a very good knowl-
edge of the data or involves lengthy manual search in the
database. Therefore the problem gets more and more com-
plex as the database grows.

For this task the domain experts reported a substantial
gain of efficiency compared to manual assignments. The
similarity search narrows down the amount of data which
has to be compared visually dramatically. Tests showed for
all sub-structure types that appropriate results are almost al-
ways retrieved within the top 20 ranks.

The domain experts also assessed the performance of the
neuron retrieval method. The biologists reported that the
method retrieves and ranks neurons in a comprehensible
way. Furthermore they expect that, with regards to the ad-
vancing growth of the database, neuron object retrieval will
become an important tool which will help to keep the neuron
database explorable.

5. Results

Results of different neuronal object similarity queries are de-
picted in table 1. Query objects are at the first column fol-
lowed by the top four result objects.

The first row shows an example query on cell bodies. As
the only discriminative feature for cell bodies is the Euclid-
ian distance between their center of mass, the query results
are as expected.

Results for two projection retrieval cases are depicted in
row two and three. The first case is relatively typical because
the search results contain the three other instances of the
same projection ranked as the top three results. In the sec-
ond case the query is performed with an object that does not
have any other instances but runs through a very common
pathway. Rank one to three are set with completely unre-
lated projections and the rank four result is an instance of
the same projection placed on rank one.

Results for two arborization retrieval cases are depicted
in row four and five. The first case is based on unrelated
geometric very similar shapes, whilst the second case also
contains partial matches in the top ranks.

Results for neuron retrieval depicted in table 1 row six
and seven. The first case demonstrates that our approach re-
trieves neurons that are of anatomically similar even if they
are completely unrelated to each other. Moreover, in the sec-
ond case the most similar neuron in the database are re-
trieved on the first place.

6. Conclusion

We have presented an effective object retrieval method for
neuronal sub-structures as well as composite neurons. Our
main contribution is the definition of dissimilarity func-
tions for various neuronal structures which reflect the special
needs in the domain of circuit neuroscience. Furthermore
we defined a domain specific composition of sub-structure
results which enables similarity based retrieval of complete
neurons.

As domain experts have reported, the retrieval results for
neuronal structures are absolutely appropriate. Apart from
the currently low number of admissible composite neurons
this even applies to neuron retrieval.

Despite the already good performance, future work must
be the further enhancements of retrieval performance. This
involves further exploitation of domain knowledge into the
discrimination process. Furthermore, the next logical step
would be a semi- or fully-automatic labeling of neuronal
structures based on the proposed retrieval system.
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Table 1: Result Images
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