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Forced Random Sampling
Fast Generation of Importance-Guided Blue-Noise Samples
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Abstract In computer graphics, stochastic sampling

is frequently used to efficiently approximate complex

functions and integrals. The error of approximation can

be reduced by distributing samples according to an

importance function, but cannot be eliminated com-

pletely. To avoid visible artifacts, sample distributions

are sought to be random, but spatially uniform, which is

called blue-noise sampling. The generation of unbiased,

importance-guided blue-noise samples is expensive and

not feasible for real-time applications. Sampling algo-

rithms for these applications focus on runtime perfor-

mance at the cost of having weak blue-noise properties.

Blue-noise distributions have also been proposed for

digital halftoning in the form of precomputed dither

matrices. Ordered dithering with such matrices allows

to distribute dots with blue-noise properties according

to a grayscale image. By the nature of ordered dither-

ing, this process can be parallelized easily.

We introduce a novel sampling method called Forced

Random Sampling that is based on Forced Random

Dithering, a variant of ordered dithering with blue noise.

By shifting the main computational effort into the gen-

eration of a precomputed dither matrix, our sampling

method runs efficiently on GPUs and allows real-time

importance sampling with blue noise for a finite number

of samples. We demonstrate the quality of our method

in two different rendering applications.
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1 Introduction

Stochastic sampling is a widely used technique in com-

puter graphics and is typically used for anti-aliasing or

the evaluation of complex integrals like the rendering

equation [15]. Compared to regular sampling, stochas-

tic sampling uses random sample locations, which miti-

gates aliasing artifacts. However, this does not guaran-

tee the function to be sampled spatially uniformly. Ran-

dom samples do not cover the sampling domain evenly,

but tend to cluster and form holes. An ideal sample

distribution would have a high spatial uniformity and

a low regularity, such as the Poisson disk distribution.

Its power spectrum has distinctive blue-noise proper-

ties, i.e., it is isotropic, has no concentrated spikes and

no low-frequency energy. Sampling with such a distri-

bution is called blue-noise sampling.

Creating a blue-noise sampling pattern with a given,

constant density of samples can be easily achieved. How-

ever, in most applications, an importance function is

available that provides an estimate of the function to be

sampled. By varying the local sample density according

to the importance function, the error of the approx-

imation can be significantly reduced. In recent years,

several efforts have been made to create fast sampling

algorithms that generate blue-noise sampling patterns

according to importance functions. However, the meth-

ods are still either limited in their performance or the

blue-noise characteristics of the resulting sampling pat-

terns are comparatively weak.

In digital halftoning, blue noise is used to reduce vis-

ible artifacts in the arrangement of ink dots. Ordered

dithering, a common halftoning technique for grayscale

images, overlays the image with an infinite tiling of a

precomputed dither matrix. The decision whether to

place an ink dot is the result of a threshold compari-
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son of each image pixel with the corresponding dither

matrix element. These threshold comparisons are inde-

pendent from each other, which makes ordered dither-

ing inherently parallelizable and therefore very efficient.

However, due to the finite size of the dither matrix,

only a finite number of unique dots can be drawn be-

fore the arrangement starts to repeat itself. Thus, or-

dered dithering trades high quality and performance at

a small scale for repetition artifacts at a large scale.

In this paper, we introduce Forced Random Sam-

pling (FRS), a simple and parallelizable blue-noise im-

portance sampling algorithm based on ordered dither-

ing. The main idea behind FRS is to threshold a large

precomputed dither matrix with an importance func-

tion to distribute two-dimensional samples instead of

ink dots. Although the algorithm works with any dither

matrix, we use a Forced Random Dithering matrix [25],

which results in a sampling pattern that resembles a

blue-noise distribution. The matrix is created by ran-

domly adding points into a repulsive force field near the

location of lowest energy, which results in a spatially

uniform, but irregular placement. As with dithering,

using a non-constant importance function for thresh-

olding allows the generation of samples with local den-

sities matching the corresponding importance values.

A dither matrix of size 64 × 64 with values scaled to

[0, 255] for display is illustrated in Figure 1 together

with results of uniform and non-uniform sampling.

Fig. 1: Example of a 64 × 64 Forced Random Dithering ma-
trix (left), and the results of Forced Random Sampling with
a constant (middle) and a linear importance function (right).

2 Related Work

In 1983, Yellott [37] related the absence of aliasing in

the vision systems of primates to the blue-noise distri-

bution of photoreceptors and proposed such a distri-

bution – called Poisson disk distribution – for artificial

imaging. Cook [9] suggested the simple, but expensive

dart throwing algorithm for generating such a distribu-

tion for a constant importance function. Sample distri-

butions with even more pronounced blue-noise charac-

teristics can be achieved with iterative approaches [3,

12,26]. Other algorithms for creating Poisson disk sam-

ples are based on tiling the plane [13,17,18,27]. Wei [32],

Bowers et al. [5], and Xiang et al. [36] proposed parallel

Poisson disk algorithms that are capable of blue-noise

sampling on the GPU at a rate of several million sam-

ples per second. Recent approaches to generate Poisson

disk samples include sample elimination [38] and rear-

rangement of low-discrepancy samples [2].

Relaxation dart throwing by McCool and Fiume [20]

extends dart throwing to non-constant importance func-

tions and will serve as reference for all spectral analyses

in this work. For real-time importance sampling, several

tile-based approaches have been proposed [23,24,31]. In

particular, the Recursive Wang Tiles (RWT) by Kopf

et al. [16] allow fast near-blue-noise importance sam-

pling by recursively subdividing self-similar Wang tiles

with progressive point sets. We compare the distribu-

tion properties of our method to those of RWT. Unlike

RWT, our method is not recursive, which prohibits pro-

gressive sampling, but enables efficient GPU paralleliza-

tion. In a survey on Poisson disk algorithms in 2008,

Lagae and Dutré [19] concluded that algorithms based

on tiling are the only option for real-time blue-noise

sampling, despite their inferior spectral properties.

The current state of the art in real-time importance

sampling and our reference for runtime performance is

Hierarchical Sample Warping (HSW) by Clarberg et

al. [7]. HSW warps an initial, uniformly distributed

sample set recursively according to a hierarchical repre-

sentation of the importance function in order to adapt

the density of the samples to the local probabilities.

However, HSW cannot preserve the distribution prop-

erties of the initial sample set and is therefore not suited

for blue-noise sampling. Extensions to this technique

have been proposed by Cline et al. [8], Huang et al. [14]

as well as Clarberg and Akenine-Möller [6].

As with sampling, dithering with blue noise has

been a research topic for decades [28, 29], of which or-

dered dithering is particularly important. Mitsa and

Parker [21] proposed the use of blue-noise matrices in-

stead of using the matrix by Bayer [4], which produces

objectionable regularity artifacts. Similar matrices have

been proposed by Ulichney [30], Purgathofer et al. [25],

Newbern et al. [22], and Abe [1]. We base our method on

Forced Random Dithering by Purgathofer et al. because

of the simplicity and parallelizability of the matrix gen-

eration, which we revisit in Section 3. Recently, blue-

noise dither matrices have been used for color banding

reduction and volumetric light sampling in the video

game INSIDE [11] and to reduce the perceivable noise

in Monte Carlo rendered images by correlating samples

between pixels [10].
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3 Review of Forced Random Dithering

Forced Random Sampling (FRS) is based on Forced

Random Dithering, proposed by Purgathofer et al. [25].

It is a variant of ordered dithering [4] that aims at a

spatially uniform placement of dots without regularity

artifacts. The creation of the dither matrixM uses the

principle of repulsion to control the placement of dither

values. To create a matrix of size wM×wM, the values

0, . . . , w2
M − 1 are sequentially inserted into a discrete

force field. In this force field, all values that have al-

ready been inserted repulse new values according to a

force-field function f . For the most spatially uniform

distribution of values in M, the location at which the

next value should be inserted is the global minimum of

the force field. However, this deterministic choice could

possibly lead to regular patterns, which is why a local

minimum is chosen instead. This is done by randomly

selecting half of all free locations of the force field and

choosing from these the location with the minimal ac-

cumulated repulsion.

The design of the force-field function f follows from

the requirements formulated by Purgathofer et al.: For

isotropic images, f should be radially symmetric, and

to avoid clumping of values, f should penalize closeness.

Thus, as a function of the distance

r =

√
(x2 − x1)

2
+ (y2 − y1)

2
(1)

of any location (x2, y2) to an already set location (x1, y1)

in the force field, the repulsion is expressed as

f(r) = exp

(
−
(r
s

)p)
, (2)

where p and s are parameters to control the steepness

and deviation of f . For both values, Purgathofer et al.

suggest to use 1/2, which is used for all dither matrices

throughout this paper.

The algorithm has a computational complexity of

O(w4
M). With our GPU implementation – which is in-

cluded in the supplementary material – a matrix of

size 2048 × 2048 took roughly 2 hours to generate, a

matrix of size 4096× 4096 took about 20 hours.

4 Forced Random Sampling

Forced Random Sampling (FRS) is the application of

Forced Random Dithering for importance sampling. In-

stead of halftoning an image, an importance function I
defined in the sampling domain Ω ⊆ [0, 1)2 is consid-

ered. Distribution properties such as randomness and

spatial uniformity are already included in the precom-

puted dither matrix and do not need to be computed

at runtime. In this regard, FRS is similar to tile-based

sampling methods. The main advantage of these meth-

ods is the separation of sample generation and sampling

into an expensive offline and an inexpensive online com-

putation step. The dither matrix M can be seen as a

large set of possible sample distributions, including non-

uniform ones. One set of samples is drawn from M by

thresholding, where the importance function I controls

the density of samples.

Uniform Sampling. To introduce the idea of FRS,

we first consider the special case of uniform sampling,

i.e., I = 1 over the entire sampling domain. Let M
be of size wM × wM and let xM ∈ [0, wM − 1]2 be

the index of a matrix element with the precomputed

dither value M(xM). The dither values stem from the

order of insertion at matrix creation and range from

0 to w2
M − 1. This means that thresholding M with a

constant threshold function T = n, n ∈ N, will leave the

first n elements that have been inserted. The index xM
of each of these elements corresponds to a point xI =
xM/wM in the sampling domain Ω, which can be used

for sampling. By the design of the matrix, these points

are distributed spatially uniformly within Ω.

Tiling. From the dither matrixM, a maximum of w2
M

samples can be generated with the described thresh-

olding, which is one for every element of the matrix.

To generate more than w2
M samples without using a

larger matrix, a tiling of M can be used. Since M is

toroidal, it can be repeated seamlessly. From the the-

oretically infinite tiling of M, a finite section is used

for thresholding, which is illustrated in Figure 2 (left).

This section, in the following called window of M, has

to be large enough to provide the desired number of

samples, but should be as small as possible to minimize

the computational effort of thresholding. The window

can additionally be offset relative to the first element of

M to vary the sample distribution for the same I and

M over several sampling runs. Since this window offset

∆W does not influence thresholding, its value can be

chosen randomly from [0, wM − 1]2.

Having a window larger than the dither matrix in-

fluences thresholding because the same dither values

occur multiple times in the window. In the case of a

window of size sW = (wW , hW ) = (wM, wM), the first

n elements of the dither matrix pass thresholding. If,

however, wW = hW = 2wM, each value ∈ [0, w2
M − 1]

of the dither matrix appears four times in the window.

Thus, the threshold needs to be scaled to a quarter

of its original value to account for that. Similarly, if

wW = hW = wM/2, the window would contain only a

quarter of all possible dither values, which is why the
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Window of M

∆W∆W

xWxW <

I

xIxI ×

τ

→

Result

Fig. 2: Illustration of the thresholding inequality of Forced
Random Sampling.

threshold would have to be multiplied by four. If the

size of the window does not match the size of M, the

threshold function T therefore has to be extended to

T = n
w2
M

wWhW
. (3)

Sparsity. The size of the window sW depends on mul-

tiple parameters and determines the quality and perfor-

mance of sampling. The smallest possible window size

for n samples is sW = (
√
n,
√
n). In this case, every ele-

ment inside the window would pass thresholding, which

would result in a completely regular sample placement.

This degeneration to regular sampling has to be pre-

vented by enforcing an average distance between sam-

ples, which is achieved with the sparsity parameter σ.

It introduces a constraint that on average, only one out

of σ2 window elements passes thresholding. The choice

of σ influences the quality of the resulting samples. If

it is too low, the samples exhibit strong regularity arti-

facts. If it is too high, the window becomes large and too

many elements are compared for thresholding, which re-

duces the runtime performance. σ should therefore be

as small as possible, but as large as necessary to avoid

artifacts. We propose a value of σ = 8, which is – in-

dependently of the matrix size wM – a fair compromise

between quality and performance.

Non-Uniform Sampling. Until now, only uniform

sampling has been discussed, in which case it suffices to

threshold the window with T as shown in Equation 3 to

get n samples. But if I is non-constant, more elements

of the window should remain in regions of higher im-

portance than in regions of low importance such that

the density of the resulting samples approximates I.

Thus, in the general case, the threshold of each win-

dow element xW depends on the importance I(xI) at

the corresponding point xI = xW/sW in the sampling

domain, i.e.,

T(xI) = τ I(xI), (4)

where τ is a constant scaling factor. If τ = nw2
M/(wWhW ),

as in the uniform case, less than n samples would be cre-

ated if I(xI) < 1 for any xI . To create approximately n

samples, τ needs to account for the average importance

µI =

∫
Ω

I(xI) dxI , (5)

leading to a scaling factor

τ =
n

µI

w2
M

wWhW
. (6)

In Figure 2, the complete threshold inequality of

FRS, M(xM) < I(xI) τ , is illustrated using n = 32

and a Gaussian blob as importance function. For each

element xW of the window (red), the coordinates rela-

tive to the first element of the dither matrix are given by

xM = (∆W + xW ) mod wM. The dither valueM(xM)

value is compared to the product of the corresponding

importance I at point xI (green) and the threshold

scaling factor τ . Approximately n elements pass this

comparison, and their locations (blue) are used for sam-

pling. The resulting samples are adapted to the impor-

tance function while still being well distributed.

Window Size Selection. The window is the section

of an infinite tiling ofM that is large enough to provide

the desired number of samples n through thresholding.

Its size sW = (wW , hW ) is a result of the sparsity con-

straint, which ensures that on average, only one out of

σ2 window elements passes thresholding, and thus pre-

vents the sample placement from being too regular. For

a constant importance I = 1, the sparsity constraint

can be expressed as

nσ2 = wWhW . (7)

This means that the dither matrix window has to

have a size of at least wW × hW to provide n samples

for a given σ. For a non-constant I, the sample den-

sity should vary according to it. Therefore, for regions

where I(xI) < 1, less dither values than one out of σ2

should pass thresholding. Instead of having a probabil-

ity of 1/σ2 to pass thresholding, as in the uniform case,

the probability that window element xW passes thresh-

olding should be I(xI)/σ2. From this follows that with

the wWhW window elements from the entire sampling

domain, only approximately

wWhW
σ2

∫
Ω

I(xI) dxI = nµI (8)

samples could be created, which is less than desired.

To still provide n samples in total, more samples would

need to be placed in the more important regions, which

would violate the sparsity constraint. Thus, the mini-

mum window size that follows from Equation 7 is not

sufficient in this case. Instead, the window size has to
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be scaled by 1/µI beforehand to compensate for the low

importance in some regions of I.

However, this assumes that the maximum of I,

mI = max
xI∈Ω

I(xI), (9)

is 1, which is not necessarily true. If mI < 1, the win-

dow would be scaled up unnecessarily to ensure the

sparsity constraint in regions of I(xI) = 1, which do

not exist. Thresholding would thus compare more dither

values than necessary. This can be avoided by scaling

the importance function by 1/mI such that it has a max-

imum of 1. Including both average and maximum im-

portance into Equation 7, the sparsity constraint for

sampling with a non-constant I can be expressed as

nσ2 mI

µI
= wWhW . (10)

As the window is thresholded with the importance

function, their aspect ratios should match. In the fol-

lowing, the extents of I are denoted with sI = (wI , hI),

which is the pixel size of the discretized importance

function, i.e., importance map. Without loss of gener-

ality, it is assumed that wI ≤ hI , and therefore wW ≤
hW . With the aspect ratio a = hI/wI = hW/wW ≥ 1,

Equation 10 can be rewritten as

nσ2 mI

µI
= aw2

W , (11)

from which follows

wW = σ

√
nmI

µIa
, hW = awW . (12)

These equations describe the minimum window size
to provide enough dither matrix elements for thresh-

olding with I and sparsity σ.

Thresholding. Once the size of the window has been

determined, every element xW of the window can be

thresholded with T(xI). For each xW , the dither value

at the corresponding position xM within the dither ma-

trix is compared to the threshold function and a sample

x ∈ Ω is created if M(xM) < T(xI). The location of

the sample is x = xI + ∆x/sW , where ∆x ∈ [0, 1)2

is an offset inside the window element. We use ∆x =

(0.5, 0.5) for FRS and a random offset for jittered FRS.

For an implementation of FRS, thresholding can be

parallelized because the thresholding inequality does

not depend on any intermediate results other than the

scaling factor τ and the window size. Similar to other

sampling techniques, it is not guaranteed that exactly

n samples are retrieved, but the deviation is negligible.

Since the dither matrix is repeated in the case of

wW > wM or hW > wM, repetitions in the arrangement

Window Importance map Result

Block

→

Sorted

<

I(xI)τ

→

Thresholded

→

Result

Fig. 3: Implementation of FRS. Sorting of dither values within
each block allows fast thresholding with early termination.

of the samples can occur, depending on I. In the case

of a constant I, this is certain. Repetitions cannot be

avoided completely in general, but they can be reduced

by either applying random jittering to the samples or

increasing the size of the dither matrix. In the following,

all qualitative tests will be performed on both jittered

and unjittered samples.

Also, a dither matrix of size wM = 2048 is used.

This size is a fair compromise between the expensive

matrix creation and the number of unique samples that

can be created. The size of the dither matrix does not

influence the runtime complexity of FRS, but the qual-

ity of the samples. As the dither matrix is a regular grid,

samples obtained from it always exhibit regularity to

some extent because of their discrete element positions.

With an increasing dither matrix size, this regularity

becomes less apparent in the sample distribution. Fur-

thermore, only a finite number of unique samples can

be obtained from one dither matrix. Using Equation 7,

this number is nmax = w2
M/σ2. For the parameters used

in this paper (wM = 2048, σ = 8), nmax = 65536.

5 Implementation

A naive implementation of Forced Random Sampling

(FRS) compares every dither value of the window with

the threshold function (Equation 4). Due to the intro-

duced sparsity value (in our case 8), this would require

a prohibitive number of comparisons (in our case 64)

for each generated sample. In order to speed up the

sampling process, a number of implementations have

been investigated, including a hierarchical comparison

of dither matrix values. The fastest version on both the

CPU and the GPU is based on a reorganization of the

values, which is illustrated in Figure 3. The dither ma-

trix window is subdivided into wIhI blocks of size wB×
wB (red), each corresponding to one pixel of the impor-

tance map (green). Following Equation 7, the number
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of samples that can be obtained from such a block is
w2

B/σ2 on average. Accounting for the random distribu-

tion of values in the dither matrix, a conservative esti-

mation of the maximum number of samples per block is

twice that value, i.e., nB = 2w2
B/σ2. If the dither values

of a wB × wB block are sorted, thresholding for this

block can stop after nB comparisons. Furthermore, an

early termination after the first element greater than

the threshold can be performed (if the importance is

constant within the block), or after the matrix value is

greater than the maximum importance within the block

(for non-constant importance).

To achieve this, the dither values are sorted in as-

cending order within each block. Additionally, an ele-

ment index ∈ [0, w2
B − 1] corresponding to the former

position of the pixel in the block is kept for each value.

All of these blockwise-sorted lists can be stored in one

buffer of length w2
M, which is the size of the original

dither matrix. Since the dither values are sorted and

only a maximum of nB values per block are required,

only the first nB elements of each block need to be

stored, adding up to nBwIhI elements for the whole

dither matrix. This is especially useful for the GPU im-

plementation, as only a small portion of the dither ma-

trix needs to be uploaded to and stored in the graphics

card memory.

All wIhI blocks are independent from each other

and can be processed in parallel. The thresholding in-

side each block uses only basic operations that can be

executed efficiently on the GPU. As window and block

size are dictated by the maximum value of I, the need

for recursion of tile-based sampling algorithms such as

Recursive Wang Tiles (RWT) is avoided. However, this

comes at the cost of potentially many threshold rejec-

tions, especially if I has a high dynamic range.

Sample implementations of FRS for CPU and GPU

can be found in the supplementary material for this

paper together with dither matrices of different sizes.

6 Evaluation

Spectral Analysis. In order to evaluate the quality

of a sample distribution for importance sampling, a dif-

ferential domain analysis (DDA) [34] is performed. As

with Fourier analysis, the results of this method can

be shown in a spectral plot. The quality of a sample

distribution is assessed by comparing its power spec-

trum to the power spectrum of relaxation dart throw-

ing. Distinctive patterns are identified and interpreted

according to the reference spectra given by Wei and

Wang [34]. The optimal spectrum is isotropic, has a low-

energy annulus around the center followed by a narrow

high-energy annulus corresponding to the minimum dif-

ferential of any two samples and then transitions into

noise. As the average distance between samples varies

according to the importance map and is the lowest at

the most important region, the radii of the annuli also

vary between different importance maps. Their general

behavior, however, stays the same.

Estimated power spectra of Forced Random Sam-

pling (FRS) and jittered FRS for different importance

maps are shown in Figure 4. They are compared to the

estimated power spectra of Hierarchical Sample Warp-

ing (HSW) [7] and Recursive Wang Tiles (RWT) [16].

For RWT, the implementation and the tiles included in

the supplementary material for the paper by Kopf et al.

have been used (8 tiles with 2048 base points and 4× 4

sub-tiles with 1 subdivision rule each). For HSW, dif-

ferent input sample distributions have been used, which

can be identified in Figure 4 by the labels random, reg-

ular, Halton and Poisson disk. All power spectra were

estimated based on 10 different sets with 1024 samples

each. For FRS and jittered FRS, the sparsity σ = 8 and

matrix size wM = 2048 have been chosen. The DDA

was performed with the tool provided by Wei [33], us-

ing the parameters that have been recommended in the

paper by Wei and Wang [34] for an easy comparison.

The power spectra of relaxation dart throwing and

FRS show similar distribution properties for all impor-

tance maps. In particular, they exhibit almost no low-

frequency energy and are highly isotropic. This sug-

gests the use of FRS as a fast alternative to relax-

ation dart throwing. The power spectrum of FRS also

clearly shows the low-energy annulus around the cen-

ter followed by a high-energy annulus, which is slightly

fringed outwardly as compared to the sharp transition

in the reference spectrum. This indicates a higher vari-

ation of the differentials and thus an increased ran-

domness of FRS compared to Poisson disk sampling.

Figure 5 illustrates a second difference to the refer-

ence spectrum: a second peak in the radial mean cor-

responding to the double of the minimum differential.

In the power spectrum, this manifests itself as a second

annulus of high energy around the first one. Further-

more, Figure 4 demonstrates that FRS is well suited

for importance sampling, as its good spectral proper-

ties are preserved locally when using a non-constant im-

portance function. These properties are even preserved

for highly anisotropic importance functions such as the

gradient, which pose a problem for HSW and RWT.

Another observation from the power spectra is that

jittering the obtained FRS samples does not signifi-

cantly influence the quality. Although the regular ar-

rangement of values in the dither matrix leads to reg-

ular sample locations to some extent, the sparsity con-
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Fig. 4: Estimated DDA power spectra of different importance-guided sample distributions. The leftmost image column depicts
the importance map. The bottom row shows a set of 1024 samples of each sample distribution for the linear gradient importance
map. The reference sample distribution was generated with relaxation dart throwing.

straint causes a sufficiently irregular sample placement,

which makes additional jittering unnecessary.

Depending on the size of the window, the dither

matrix might need to be repeated to provide enough

samples. To investigate the impact of these repetitions

on the spectral properties of the sample distribution,

large sample sets have been generated for the impor-

tance functions used for Figure 4 with predefined num-

bers of repetitions. The number of repetitions can be

controlled by choosing a window size sW that is a mul-

tiple of the dither matrix size wM.

In Figure 6, the DDA power spectra of FRS are

shown for all unique samples of 1× 1, 2× 2, 4× 4 and

8×8 repetitions of the dither matrix. For up to 4×4 rep-

etitions, the power spectra for all importance functions

are isotropic and do not exhibit any spikes of concen-

trated energy. These indicators for repetitive patterns

only become apparent after 64 repetitions, in particular

for the environment importance function. Depending on

the application, the resulting artifacts might still be tol-

erable, but as a guideline, wM should be chosen such

that this amount of repetitions is not reached.

Density Analysis. Because of its simplicity, the den-

sity ρX of a sample set X is a popular measure for the

quality of a sample distribution. Lagae and Dutré [19]

proposed the calculation of the density based on the

minimum Euclidean distance between any two samples

in X, which only returns meaningful results if X is dis-
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Fig. 5: Radial means of FRS and relaxation dart throwing.

tributed according to a constant importance function.

By using the minimum transformed differential dmin af-

ter the differential domain transform as proposed by

Wei and Wang [34], the density can also be calculated

for non-uniform sample distributions:

ρX :=
dmin

dmax
, dmax =

√
2√
3n

. (13)

A density ρX ∈ [0.65, 0.85] is considered as a good

density for blue-noise sampling, while a lower value in-

dicates randomness and a higher value indicates regu-

larity. Table 1 shows the densities for the importance

maps and sampling methods used for Figure 4. The den-

sities were averaged over 10 different sample sets with

n ≈ 1024 per distribution and per importance map.

The reference sample distribution with a target den-

sity ρ = 0.7 is dart throwing in the uniform case and

relaxation dart throwing in the non-uniform case.
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Fig. 6: Estimated DDA power spectra of Forced Random
Sampling for windows larger than the dither matrix. One of
the spike artifacts in the spectra generated with 8× 8 repeti-
tions of the dither matrix is enlarged for better visibility.

Constant Environment Gradient
HSW/Random 0.003 0.008 0.001
HSW/Regular 0.930 0.357 0.439
HSW/Halton 0.066 0.041 0.138

HSW/Poisson disk 0.700 0.142 0.370
RWT 0.339 0.315 0.294
FRS 0.681 0.644 0.662

Jittered FRS 0.668 0.661 0.617
Reference 0.700 0.700 0.700

Table 1: Densities of different sampling methods (rows) for
different importance functions (columns).

It can be seen that, independent of the input distri-

bution, HSW is not able to preserve the density of the

samples when warping non-uniformly. The density of

RWT is similar for all importance functions, but very

low, as already pointed out by Lagae and Dutré. The

density of FRS is similar for all importance maps and is

in the lower end of the interval suggested by Lagae and

Dutré. The density of jittered FRS tends to be slightly

lower than the density of FRS, which can be explained

by the small amount of randomness added by jittering.

Performance Analysis. FRS, HSW with Halton sam-

ples, and RWT have been implemented based on the

.NET Framework 4.0. For the GPU implementation,

OpenCL 1.2 was used. RWT has not been implemented

on the GPU, since the recursive nature of the algorithm

prevents a high-performance GPU implementation. The

tests were performed in a 64-bit environment on a sys-

tem with an Intel i7-950 3.07 GHz quad-core processor

and an NVIDIA GeForce GTX 680 graphics card.

In Figure 7, the benchmarks of FRS are compared

to those of HSW with Halton points and RWT by av-
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Fig. 7: Execution time of FRS on the CPU (left) in seconds
and on the GPU (right) in milliseconds compared to HSW
with Halton samples and RWT.

eraging the results for the three different importance

maps that were also used in the spectral analysis in

Figure 4 (empirical experiments that were omitted for

the sake of brevity have verified that the performance

of FRS is independent of the used importance map).

On the CPU, HSW is faster for up to 29 samples, but

is outperformed by FRS for more than 217 samples by

a factor of 49. RWT is faster for up to 213 samples, but

is also outperformed by FRS for more than 217 sam-

ples by a factor of 7.4. For both HSW and RWT, the

computational effort grows linearly with the number of

samples. The FRS implementations, in contrast, show

a transition from constant to linear growth.

The runtime of FRS mainly depends on the win-

dow size sW rather than the number of samples, which

in turn is directly related to the sparsity σ. In order

to prevent sampling from being too regular, σ was set

to a reasonable value of 8 for the performance tests.

For the importance maps of size sI = (128, 128), this

results in a minimum window size sW = (1024, 1024).

Following Equation 7, a maximum of 214 samples can

be generated for this window size, resulting in an al-

most constant runtime of the FRS implementations up

to this number of samples.

In contrast to the CPU implementation, the com-

putational effort of HSW on the GPU also seems to be

constant for smaller values of n and then transitions

to the linear growth as observed above. Thus, FRS is

faster for all sample counts up to a factor of 6.8.

7 Applications

In general, Forced Random Sampling (FRS) can be

used for any sampling application based on a discretized

two-dimensional importance function with a known av-

erage and maximum. This includes stippling for non-

photorealistic rendering and automatic object place-

ment. In the context of photorealistic rendering, a ma-

jor objective is the evaluation of the rendering equa-
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Fig. 8: Top: Placement of 256 virtual light sources (blue)
for Reflective Shadow Mapping with FRS (left) and HSW
(right). Bottom: Root-mean-square error (RMSE) of results
with both sample distributions compared to a ground truth.

tion [15], which models the transport of light. Due to

the complex nature of the equation, the evaluation gen-

erally requires the approximation of a significant num-

ber of multi-dimensional integrals. Real-time algorithms

are based on simplified models that reduce the multi-

dimensional problem to one with a more manageable

number of dimensions. We demonstrate the merits of

FRS based on such algorithms since the respective re-

sults are particularly descriptive.

Reflective Shadow Mapping. We have integrated

FRS in an implementation of Reflective Shadow Map-

ping (RSM) [35]. RSM is a real-time rendering method,

where indirect illumination is approximated by posi-

tioning virtual light sources according to an importance-

guided point distribution. Hierarchical Sample Warping

(HSW) with Halton points as input samples has been

previously used to generate the positions. Compared

to HSW, FRS provides a more spatially uniform dis-

tribution, as seen in Figure 8 (top), while maintaining

real-time capability. As a result, the indirect illumina-

tion converges faster to a ground truth obtained offline

by relaxation dart throwing with 16 384 virtual light

sources. This is illustrated in Figure 8 (bottom) with

the root-mean-square error (RMSE) of the rendered

images compared to the ground truth, each averaged

over ten different sample sets. For all typical numbers

of virtual light sources, FRS exhibits a lower deviation.

Photon Tracing. Another application of FRS is the

generation of well-distributed photon directions, espe-

cially for photometric light sources with non-uniform

Fig. 9: FRS integrated in photon tracing for interactive light
planning. The blue points show the first hits of 5000 photons
emitted from the photometric light sources, the yellow lobe
visualizes the emission profile of the selected light source.

emission profiles. We have integrated our method into

a photon tracer for interactive light planning. The re-

sulting photon distribution shown in Figure 9 exhibits

no regularity or clumping.

8 Conclusion and Future Work

We have presented a novel algorithm for generating a fi-

nite number of importance-guided samples in real time

that exhibit distinct blue-noise characteristics. Our al-

gorithm has been shown to outperform the fastest ex-

isting method on the GPU and – if generating more

than about 213 samples – also on the CPU. Our method

generates high-quality samples that are comparable to

those generated by much slower reference methods. This

is especially notable, since the second fastest method
on the CPU, Recursive Wang Tiles (RWT), has been

shown (in this paper and by Lagae and Dutré [19]) to

generate samples of significantly lower quality.

Currently, our method cannot be easily extended to

more than two dimensions since the creation of higher-

dimensional dither matrices is prohibitively expensive

(even though it is only a one-time precomputation step).

Another challenge is to adapt our method to a curved

sampling domain since the force-field matrix generation

is based on the Euclidean distance (see Equation 1). We

will direct our research effort into improved generation

methods in order to overcome these limitations.
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