
Authors manuscript. Published in The Visual Computer, first online: 14 May 2018
The final publication is available at Springer via https://doi.org/10.1007/s00371-018-1552-4.

Lens flare prediction based on measurements with real-time
visualization

Andreas Walch1 · Christian Luksch1 · Attila Szabo1 · Harald

Steinlechner1 · Georg Haaser1 · Michael Schwärzler1 · Stefan

Maierhofer1

Abstract Lens flare is a visual phenomenon caused by

interreflection of light within a lens system. This effect

is often seen as an undesired artifact, but it also gives

rendered images a realistic appearance and is even used

for artistic purposes. In the area of computer graph-

ics, several simulation based approaches have been pre-

sented to render lens flare for a given spherical lens sys-

tem. For physically reliable results, these approaches

require an accurate description of that system, which

differs from camera to camera. Also, for the lens flares

appearance, crucial parameters – especially the anti-

reflection coatings – can often only be approximated.

In this paper we present a novel workflow for gener-

ating physically plausible renderings of lens flare phe-

nomena by analyzing the lens flares captured with a

camera. Our method allows predicting the occurrence

of lens flares for a given light setup. This is an often

requested feature in light planning applications in or-

der to efficiently avoid lens flare prone light positioning.

A model with a tight parameter set and a GPU-based

rendering method allows our approach to be used in

real-time applications.

Keywords Lens flare · Data driven workflow · Real

time

1 Introduction

This work is a practical approach to gain information

on lens flare occurrences for a lens system for which

no specifications are known. Lens flare is a visual ef-

fect that appears due to internal reflections within a

Andreas Walch
E-mail: walch@vrvis.at

1
VRVis Research Center, Vienna, Austria

lens system or due to scattering caused by lens mate-

rial imperfections. The intensity of lens flare heavily de-

pends on the camera to light source constellation and

of the light source intensity, compared to the rest of

the scene [7]. Lens flares are often regarded as a dis-

turbing artifact, and camera producers develop coun-

termeasures, such as anti-reflection coatings and opti-

mized lens hoods to reduce their visual impact. In other

applications though, movies [16,23] or video games [21],

lens flares are used intentionally to imply a higher de-

gree of realism or as a stylistic element. Figure 1 shows

a typical lens flare with highlighted lens flare elements.

Fig. 1 Outdoor lens flare with highlighted ghosts

A lens flare-aware light planning stage allows the

light designer to carefully elaborate an optimal camera

and light setup to avoid lens flares. Lens flare occurs

whenever the light passes the lens system in an unex-

pected way while getting reflected multiple times within

the system. If these non-image-forming paths reach the

sensor, they form visible artifacts called ghosts [7]. Fig-

ure 2 shows how a ghost can occur.

There are two approaches to predict the occurrence

of lens flare in a physically plausible way:

https://doi.org/10.1007/s00371-018-1552-4

2 Walch et al.

Fig. 2 Unintended reflection path, which forms a ghost
.

One approach to predict lens flare occurrences is

simulation. A precise description of the lens system and

all its properties are essential to carry out a physically

correct simulation. The lens flare characteristics depend

heavily on the lens system parameters. However, these

parameters are often kept under disclosure by the man-

ufacturers, which is why the simulation can only be

approximated and lacks precision.

Another way to predict lens flare occurrence can be

done by examining real-world measurements. The cam-

era and all its hidden parameters can be interpreted

as a black box. The input is a bright light source, and

the black box’s output is raw images. The raw images

contain all lens system-dependent transformations of

the input light, including physically accurate lens flares.

This approach does not rely on any internal specifica-

tions of the lens system and is therefore very flexible

and independent from the camera manufacturers.

Driven by these observations, we developed a data-

driven workflow to predict and render lens flare, espe-

cially ghosts, for any lens system. In contrast to pre-

vious work we do not rely on any specific information

of the lens system’s internal structure and provide a

real-time visualization.

1.1 Background - lens flares

A camera consists of a lens system, where multiple

lenses are arranged along the optical axis. The com-

bination of various lenses reduces optical aberrations

and allows to design light propagation for specialized

photometric demands.

Lens flare can be distinguished into three different

kinds of element types: The visibly most prominent ef-

fect is a star -shaped element, where multiple bright

streaks are radiating outward from the light source cen-

ter [10]. These glare streaks are caused by diffraction

at the edge of the aperture. The close area around the

light source is also affected from a less distinct glare,

called halo, which fades out gradually. The positions of

these types are easy to predict, since they occur at the

position of the light source.

The other prominent effect is a series of circles and

rings aligned on a line, which crosses the light source

center and the image center. The shapes on this array

are called ghosts, and their position and shape differ

strongly from camera to camera. These ghosts are the

most complex lens flare elements. Their occurrence is

non-trivial to predict, because they depend on complex

interreflection paths within the lens system.

2 Related work

The light propagation and various optical effects can

be accurately simulated, if all parameters are available.

In the field of optical lens design, tools like ZEMAX or

Code V provide correct simulation results, but they are

not intended to generate (real-time) renderings [20].

2.1 Artificial lens flare rendering

Artificially created lens flare effects are based on sprites

to enrich a scene with lens flare effects, but they are not

physically correct. Kilgard et. al. [11] suggest to blend

lens flare textures in a post-processing effect and to ar-

range the sprites along a line through the image center

following an ad hoc displacement function. King [12]

achieves to include camera movements by changing the

opacity and size of the lens flare sprites, depending on

the angle between camera and light source. Maughan [15]

suggests to scale the intensity of the effect by the amount

of visible light pixels in the rendered image. Sekulic [17]

recommends to use the occlusion queries features of

common graphical processing unit (GPU) to handle

performance issues. Alspach [1] presents a set of basic

vector elements to approximate lens flare elements.

2.2 Physically based lens flare simulation and

rendering

Physically motivated lens flare renderings are based on

physically plausible simulation. Chaumond [2] uses sim-

ple path tracing, while Keshmirian [10] uses photon

mapping to render lens flare. Both approaches converge

slowly. Since anti-reflection coatings are not included,

the color of the ghosts cannot be determined. Steinert

et al. [18] present a full spectral camera model based

on lens design data and well approximated lens coat-

ings. The complex simulation approach is able to de-

termine the color of ghosts, but the simulation time

Lens flare prediction based on measurements with real-time visualization 3

Fig. 3 Overview of our data-driven lens flare rendering and prediction workflow. First data are acquired (Sect. 3.1), upon
a model is created (Sect. 3.2). Within the optimization stage the ideal parameter set is found (Sect. 3.3) and is used for
interactive real-time visualization (Sect. 3.4) and occurrence prediction (Sect. 3.5).

is beyond the requirements of real-time applications.

Hullin etal. [8] improve simulation efficiency by repre-

senting the lens system by polynomials, while Hanika [5]

increases precision. Hullin et al.’s [7] ray tracing-based

approach uses ray bundling to efficiently generate re-

alistic lens flare textures in a pre-processing step. The

colors of ghosts are approximated, while lens imperfec-

tions are artificially generated by slightly offsetting the

ghosts. Lee et al. [13] improve the work of Hullin et

al. [7] regarding simulation speed to fulfill requirements

of real-time application, but with coarser quality. The

ray transfer is efficiently approximated by ray transfer

matrices, allowing to directly project a quad from the

entrance pupil onto the sensor in constant time. The

ghost’s intensity is scaled by the projected quad, and

its color is sampled by one ray in the ghost center for

each color channel separately. Hennessy [6] suggests im-

proving this approach by scaling the ghost’s intensity

by the effective aperture and to sample a ghost’s color

by a random angle for each color channel to reduce the

chance of complete internal reflections. Joo et al. [9]

present a method to simulate lens imperfections caused

during the manufacturing process. The swinging move-

ments of the polishing and grinding tools are simulated

and used to generate imperfection textures. This ap-

proach is also capable of dealing with aspherical lenses,

while the other methods are limited to spherical lenses.

The texture creation is very costly due to a large num-

ber of lens samples to reduce noise, but the generated

imperfection textures can be applied in a sprite based

rendering approach like proposed by Lee et al. [13] to

be used within real-time applications.

3 Workflow

Our approach does not assume any presumptions on the

internal lens system’s structure. This means, in par-

ticular, that the number of lenses, their shapes, and

their materials and coatings are unknown. Hence, we

have to derive the behavior of lens flare artifacts purely

from captured images. As a data-driven workflow (illus-

trated in Fig. 3), the first stage concerns data acquisi-

tion (see Sect. 3.1). After analyzing the sampled ghosts,

we sketch a basic model for ghost rendering (Sect. 3.2).

The following stage optimizes the parameters of the

model to best fit the captured data (Sect. 3.3), which

enables a physically plausible digital representation of

the captured data. Based on this sparse description, in-

teractive real-time visualization (Sect. 3.4) and occur-

rence prediction is achieved (Sect. 3.5).

3.1 Data acquisition

To sample the behavior of lens flare, the camera to light
constellation has to be sampled in discrete steps. While

using a sufficient small step size, the ghost’s positions

do not vary too much between neighboring samples.

This allows to reconstruct the behavior of each ghost

over the sampled range. To reduce the amount of sam-

ples, we assume radial symmetrical lens system, where

the symmetrical axis is the optical axis. Therefore it

is enough to rotate the camera only around one axis

to capture all essential information of a lens flare. The

optical axis of the camera has to cross the light source

center to depict all variations. To ensure equally small

rotation steps (0.2◦), we used a programmable motor-

ized panorama rotation head from Syrp [19].

A fully opened aperture allows more light to reach

the sensor, which reduces the ghost shape complexity

and affects the exposure time. The exposure time has to

be adjusted carefully to avoid over-saturated areas, but

to also depict ghosts with low intensity. The brighter

the light source, the less exposure time is needed to

depict the same image as a less powerful light and a

4 Walch et al.

Fig. 4 Light test setup and result (1 s)

longer exposure time. To increase the possible range

of intensities, multiple images with different exposure

times (0.25 s/1 s/4 s) are sampled and combined to a

high dynamic range (HDR) image. The HDR images

are converted from the camera-specific RAW-format to

the common open-source format OpenEXR from Indus-

trial Light and Magic [14] to provide high quality for

further processing. The light source itself is assumed to

be a point light. To uphold this assumption we used a

light source with a very narrow output angle. To ensure

that the camera’s entrance pupil is fully, but as tightly

as possible, illuminated, we placed the light source care-

fully to simulate parallel incoming light rays (Fig. 4).

The prototype consists of a camera and a bright

light source, each placed on a tripod in such a manner

that the optical axis of the camera is on the same height

as the light source. To reduce background noise the sur-

roundings and tripods are covered by a black curtain.

To create our final data set we used a Canon EOS 5D

Mark II (1 s—f/1.4—24mm—ISO 100—no lens hood)

and the endoscopy light system (Olympus CLV-S). The

setup’s complexity is intentionally kept simple and gen-

eral to be reusable for any mountable camera model or

lens system.

3.2 Lens flare model

The captured samples show a physically correct map-

ping of lens flares by a specific lens system, but the

samples do not contain any description about ghosts

(position, shape or appearance). Only the position of

the light source is known from the sampling angle. The

ghosts share a mirror axis along the captured horizon,

and the shape of the ghost is only horizontally clipped

by the (circular) entrance pupil. Therefore, the upper

and lower parts of the ghost are mirrored, and the left

and right side of the shape may differ.

We want to create a simple model to describe and

create an approximate visual copy of each ghost within

the capture sample. The general position of a ghost

can be expressed by a position vector (Mx and My)

within screen space. To describe the whole ghost shape,

multiple circular segments have to be smoothly com-

bined. Bézier curves are flexible enough to describe var-

ious forms. They can be smoothly attached to each

other by placing the control points accordingly. To re-

duce the overall complexity of our ghost shape model,

we only use cubic Bézier curves. While various shapes

can be formed by cubic Bézier curves, a perfect cir-

cle can only be faithfully approximated by appending

four cubic Bézier curves.1Four curve segments are also

the lower limit to be able to represent the encountered

ghosts shapes. Therefore, this restriction does not in-

crease the complexity of our model.

Figure 5 sketches the intention of the shape model.

The left L and right R side of the ghost can modify

the start points of their representing cubic Bézier curve

with respect to Mx, while the height h defines the as-

sembly point and also the end points of the left and

right side in respect of My. The curvature of each side

can be separately adjusted by the control points Cl and

Cr. To reduce the model complexity, the control points

are restricted to be shifted only axis-aligned to support

C1 continuity.

Fig. 5 Visualization of the shape model concept directly de-
rived of a complex ghost sample. The dotted line indicates
the weighting polygon for the cubic Bézier segment.

The intensity of a point correlates with its signed

distance to the visible ghost border. We sample the

curve at discrete points using binary search to quickly

compute its minimal distance to a query point. After

12 iterations the difference of the binary search method

is negligible to an exact, but complex polynomial root

finding method. Furthermore, the lightweight iterative

method is suitable to be executed directly on the graph-

ical processing unit (GPU), which is desirable as the

calculation has to be evaluated per pixel. The sign of

1 http://spencermortensen.com/articles/

bezier-circle/

http://spencermortensen.com/articles/bezier-circle/
http://spencermortensen.com/articles/bezier-circle/

Lens flare prediction based on measurements with real-time visualization 5

the distance indicates whether the query point is inside

or outside of the curve and can be evaluated by ba-

sic 2D-trigonometry. To determine the overall minimal

signed distance for a given pixel, the minimal signed

distance for each curve segment has to be evaluated

and compared.

After defining the signed distance for each point its

intensity value is applied by a transfer function. Fig-

ure 6 illustrates our intensity model. The highest inten-

sity values usually rest upon the ghost border Ib and

fade out to a constant value Ii (inside) or completely

(outside). The fall-out range F(i|o) and slope E(i|o) can

be adjusted, respectively, for the inside and outside.

By only evaluating pixels, which can be affected by the

transfer function, the pixel evaluation can be drastically

reduced. As each ghost only describes light, multiple

ghosts can be additively blended into a single image.

Color can be interpreted as combination of multiple in-

tensity channels; therefore, the intensity transfer func-

tion has to be applied to each channel separately. To

reduce the overall complexity, the model only supports

intensity or gray-scale values.

Fig. 6 Visualization of the intensity model. Intensity de-
pends on the pixel distance to the visible ghost border. The
inside and outside can be adjusted individually. I1 and I2
show an example how the intensity is formed for the inside
(ti) and outside (to).

We intentionally create a model with a minimal pa-

rameter set in regard to the upcoming stages of the

workflow, but powerful enough to describe various ghosts.

Furthermore, the model can be easily extended, like to

represent a more complex aperture shape by using addi-

tional curve elements. The whole rendering and model

evaluation is directly performed on the GPU.

3.3 Optimization

By adjusting the model’s parameters the captured ghosts

can be completely described or quite well approximated,

because some details are maybe not depictable by the

model. The difference between the captured image and

the model rendering has to be as small as possible. The

difference can be described by a cost function, while

reducing the cost indicates a higher similarity between

two images. This states a typical optimization problem,

where the global minimum of the cost function repre-

sents the best solution.

3.3.1 Cost function

A simple cost function can be formulated by the sum

of absolute pixel differences. (See Eq. 1 mean squared

error (MSE), where X is the reference image and Y

the model generated image. Further, MSE allows to

weight small differences less than larger ones, which

gives a better guidance for an optimization routine. Un-

fortunately, this basic cost function fails on real-world

data, because it is not able to distinguish between back-

ground noise and actual lens flare elements. Smoothing

or clipping the image with a given threshold removes

noise, but it also erases information, which is not de-

sirable. In the field of image compression, the struc-

tural similarity (SSIM) index is used to describe the

perceived similarity of a compressed image to its orig-

inal [22]. Unfortunately, the more complex and rather

costly approach behaves quite similar to the basic MSE

cost function.

costMSE =
1

n

n∑
i=0

(Xi − Yi)
2 (1)

To avoid divergence caused by background noise,

additional similarity features are necessary. The visible

border edge of the ghost shape is also a valid compari-

son component. We use a discrete Laplacian filter ker-

nel to detect horizontal, vertical and diagonal edges. To

improve the edge images, each image is pre-smoothed

by a Gaussian filter kernel to reduce noise. The Lapla-

cian filter kernel only responds to gradient changes and

therefore maps an edge as two one pixel wide lines.

While calculating the difference of edge images, it is

likely that two edges only cross each other but not map

completely. By smoothing both edge images again, the

chance rises that two edges are partly overlapping or

their differences are influenced by close edges. This edge

difference cost function and the basic MSE cost func-

tion are linearly combined and turn out to converge also

with real-world data. To efficiently evaluate the cost

function, the image differences are directly processed

on the GPU. The MSE is optimized by using a Mipmap

pyramid, where the top of the pyramid represents the

averaged value for the whole image. Image filtering is

optimized, by separating the Gaussian kernel into two

1D-kernels to be executed sequentially (Fig. 7).

6 Walch et al.

Fig. 7 Edge cost function creation. Top row shows a cap-
tured ghost of the acquisition stage, while the bottom row
visualizes a model based rendering. The first column is the
input file. The second column is the result of a Gaussian-
Laplacian filtering. The third column presents the result of
the final edge cost, where an additional Gaussian kernel is
applied to the second column to increase overlapping in the
difference images. For visualization purposes the edge images
are brightened up.

3.3.2 Optimization Strategy

We use multivariate gradient descent to find the mini-

mum of our cost function. Due to the function’s com-

plexity, the gradient cannot be derived in closed form,

but it can be numerically approximated by calculat-

ing the central differential quotient for each param-

eter. The numerical gradient approximation indicates

whether a parameter has to be increased or decreased.

For each parameter, an individual step size is main-

tained, as the parameters vary in range and magnitude.

A global learning rate ensures fast convergence by de-

creasing the step sizes only, if the current step size is

too crude to find a better solution. In our approach

the learning rate is reduced after every 100 iterations

by 20%. To ensure that each parameter is equally of-

ten changed, the parameters are changed in fixed order

(shape before shade). We update the parameters in an

online update way, where the currently optimized value

is directly incorporated into the model before evaluat-

ing the remaining parameters [3].

In order for gradient descent to not get stuck in lo-

cal minima, it is crucial to initialize parameters close to

their final values, such that the optimizer only has to

fine-tune the solution. As lens flare varies smoothly over

the whole image range, model parameters also change

very gradually from image to image. Therefore, we can

re-use the optimized parameter values from one image

as seed values for neighboring images. In order to boot-

strap the whole process, we choose a key frame for each

lens flare element, where the element is clearly visible

and define suitable model parameters. Starting from

the key frame we can now track the model from image

to image as described above. Additionally, as soon as

we have tracked an element across multiple frames, we

fit a polynomial to each parameter (in the least-squares

sense) to estimate initial parameters for neighboring im-

ages more precisely to further speed up convergence. A

polynomial of degree 2 proofs to be sufficient and avoids

overfitting. Currently, the initial creation of elements at

key frames is performed manually.

3.4 Real-time visualization

Each sample can be directly visualized by the previ-

ously fine-tuned parameter set. An interactive visual-

ization allows the user to change the camera to light

constellation while only reusing the discrete sampled

constellations jitters are visible. A denser sample rate

could reduce these artifacts, but increases the effort for

the whole workflow extremely. To generate a smooth

transition between the sampled constellations, we ap-

proximate each parameter over the sampled range by a

least-squares fitted polynomial of low order. The look-

up complexity for any constellation within the sampled

range is reduced for each parameter by only one poly-

nomial evaluation.

3.4.1 Visualization integrated into an application

The interactive visualization can be included into a 3D

software while using the visualization as an overlay in

the post processing stage. The virtual constellation an-

gle between the camera and the light source is directly

used to evaluate the previously mentioned polynomials

(Sect. 3.4). Because we only support radial symmetri-

cal lens systems, the lens flare rendering can be rotated

around its image center to match the roll angle of the

light source and the camera’s horizon.

To allow a realistic lens flare effect, the virtual cam-

era of the 3D application has to simulate the camera

parameters of the captured camera. The focal length

is fixed, and we only support a fully opened circular

aperture. The intrinsic parameters (aperture stop, film

speed, exposure time) adjust the brightness of an im-

age. In case the virtual camera uses the same parame-

ter configuration as the captured camera and the light

source is identical, the brightness is equal and therefore

the overlay can simply be added to the scene rendering.

Otherwise the brightness of the overlay has to be scaled

accordingly to match the scene’s brightness. Equation 2

describes the scale factor Bscale between the lens flare

rendering F and the rendered scene R, where f is the

Lens flare prediction based on measurements with real-time visualization 7

f-number, ISO is the film sensitivity, EXP is exposure

time in seconds. In case the luminance l and the solid

angle α of both light sources are known, a brightness

ratio can be formed.

Bscale =
f2F
f2R

∗ ISOR

ISOF
∗ EXPR

EXPF
∗ lR ∗ αR

lF ∗ αF
(2)

The anti-reflection coatings are designed for specific

wavelengths. Therefore, to guarantee a realistic lens

flare the virtual light source has to match the sampled

light’s wavelength distribution. By using a normed light

source with a known wavelength distribution, other light

sources with a similar distribution can be roughly ap-

proximated. Otherwise the whole workflow has to be

carried out again by capturing the specific light source.

3.5 Lens flare occurrence prediction

The previously presented real-time visualization (Sect. 3.4)

creates physical plausible rendering for a given constel-

lation. The generated overlay texture holds numerical

intensity values, which can be further examined to pre-

dict lens flare occurrence. By analyzing the texture, sta-

tistical values can be retrieved and used as an estima-

tor. The minimum and maximum intensity values are

important to define contrast. The sum and average of

all intensity values are able to approximate brightness.

The ratio between logarithmic averages of virtual scene

and overlay can be used as a glare indicator, since the

logarithmic average is more stable with respect to out-

liers than a simple average. The presence of lens flare

reduces the contrast of an image. The ratio of the ideal

contrast and the real contrast describes the change of
contrast, while lens flare occurs [4].

All previously described occurrence estimators rep-

resent a numerical value, but without any context or

bounds, these values are not really meaningful. While

comparing the current occurrence estimator to the esti-

mators over the whole sampled range, the current con-

stellation can be rated. By inspecting the statistic of a

certain estimator, global extremes can be derived and

also used to express the quality of the current state.

4 Results

Figure 8 (left) gives a rough overview how lens flare

behaves, while the camera starts heading directly into

the light source and is horizontally rotated away until

no lens flare occurs. Figure 8 (right) shows a close up

of a ghost at sample 22.8◦ to emphasize the complexity

of ghosts.

Fig. 9 Left: circular shaped ghost with different distance
functions. Right: various ghost shapes generated with our
model.

The lens flare model holds a dense parameter set
and is very flexible at rendering various ghost shapes.

Figure 9 depicts how the appearance of a ghost changes

while only manipulating the distance function (left) or

shape parameters (right).

Fig. 8 Left: Rough overview of our sampled data set. Right: close-up of complex ghost at 22.8◦

8 Walch et al.

The optimization algorithm uses a cost function to

fine-tune the model parameters to best fit a sample im-

age. Figure 10 visualizes the optimization process be-

tween two neighboring samples and their corresponding

models, while Fig. 11 displays the progress of the cost

function and its components. The performance evalu-

ation in Fig. 12 points out the rendering performance

versus element resolution. Figure 13 shows a complex

lens flare generated with our method.

Fig. 10 Optimization process from manually placed model
to the neighboring sample. Images (a,b) are succeeding sam-
ples of the acquisition stage. Image (d) is a rendering of a
rough hand tuned model for the first sample (a). The param-
eters in (d) are the initial values for the optimization of (b).
The result of the optimization is depicted in image (e). Im-
ages (c/d/g/h) visualize the differences of the row or column
images (bright areas indicate difference).

Error

MSE

Edge

Fig. 11 Progress of the cost function and its components,
while best fitting the model depicted in Fig. 10d, e. The first
row shows the cost, which is a linear combination of the MSE
cost (second row) and the edge cost (third row). The increase
in the MSE after a few iterations is caused by the edge cost.
The edge cost ensures that the MSE does not emphasize back-
ground noise too much.

Fig. 12 Rendering performance strongly correlates with the
element resolution. Real-time performance can be achieved
for more than 100 elements when using smaller resolutions.
In real world applications only few lens flare elements are
outstandingly large.

5 Conclusion and future work

In this paper we describe a workflow to create a physi-

cally plausible lens flare rendering from measurements.

The workflow is designed bottom-up in stages (acqui-

sition – optimization – rendering – prediction), and

allows to stop at a certain stage, if the current re-

sult already fulfills the application’s goal. In contrast

to simulation-based approaches we do not approximate

any unknown parameters of the lens system. Our mea-

surement setup is easy to use and camera indepen-

dent. A flexible lens flare model allows to render var-

ious ghosts in real time. If details are not depictable

by the current model, it can be easily extended. We

present an optimization strategy including a cost func-

tion to semi-automatically adjust the parameters of the

lens model to increase similarity of our rendering to the

captured sample. We present an efficient way to com-

press the model parameters over a range of samples,

while simultaneously creating a continuous description

for each ghost.

This workflow describes the fundamental idea how

to generate lens flare based on measurements, but there

are many possible improvements to increase performance

and quality at various stages. We assumed some param-

eters to be constant (focal length and aperture stop)

mainly to reduce the amount of samples necessary in

the acquisition stage. By finding the optimal capture

settings for a given light source, additional samples re-

quired for HDR may become redundant, which could

lead to a shorter acquisition time. The restriction re-

garding the aperture shape can also be loosened by ex-

Lens flare prediction based on measurements with real-time visualization 9

Fig. 13 Complex lens flare generated with our method. Left is the input sample. Right shows the optimized rendering.

tending the lens flare model, but this will introduce

additional complexity.

The current optimization stage only supports grayscale

or intensity values. Adding color would benefit our sys-

tem, but would probably make the optimization stage

more complex.

To fully reconstruct a captured sample of the ac-

quisition stage, models for the star-shape and halo lens

flare elements have to be developed.

The initial shape parameters of the model could be

roughly set by a scan-line algorithm applied onto the

sample’s edge image. Furthermore, to avoid invalid pa-

rameter constellations which break the model design or

do not affect the rendering, regularization can be used

to “punish” certain parameter changes.

We have explored a new way to compress lens flare

imagery by a model-based description.

Acknowledgements We want to dedicate this work to our
late colleague Robert F. Tobler.

Compliance with Ethical Standards

Funding: VRVis is funded by BMVIT, BMWFW, Styria,

SFG and Vienna Business Agency in the scope of COMET

- Competence Centers for Excellent Technologies (854174)

which is managed by FFG. Conflict of Interest: The au-

thors declare that they have no conflict of interest.

References

1. Alspach, T.: Vector-based representation of a lens flare
(2009). US Patent 7,526,417

2. Chaumond, J.: Realistic camera - lens flare (2007).
https://graphics.stanford.edu/wikis/cs348b-07/

JulienChaumond/FinalProject
3. Christopher M., B.: Pattern Recognition and Machine

Learning. Springer (2006)

4. Franke, G.: Physical optics in photography. London: The
Focal Press,— c1966 (1966)

5. Hanika, J., Dachsbacher, C.: Efficient monte carlo render-
ing with realistic lenses. In: Computer Graphics Forum,
vol. 33, pp. 323–332. Wiley Online Library (2014)

6. Hennessy, P.: Implementation notes: Physically based
lens flares (2015). https://goo.gl/OOmIkB

7. Hullin, M., Eisemann, E., Seidel, H.P., Lee, S.:
Physically-based real-time lens flare rendering. ACM
Trans. Graph. 30(4), 108:1–108:10 (2011). DOI 10.1145/
2010324.1965003. URL http://doi.acm.org/10.1145/

2010324.1965003

8. Hullin, M.B., Hanika, J., Heidrich, W.: Polynomial op-
tics: A construction kit for efficient ray-tracing of lens
systems. In: Computer Graphics Forum, vol. 31, pp.
1375–1383. Wiley Online Library (2012)

9. Joo, H., Kwon, S., Lee, S., Eisemann, E., Lee, S.: Efficient
ray tracing through aspheric lenses and imperfect bokeh
synthesis. In: Computer Graphics Forum, vol. 35, pp.
99–105. Wiley Online Library (2016)

10. Keshmirian, A.: A Physically-Based Approach for Lens
Flare Simulation. ProQuest (2008)

11. Kilgard, M.J.: Fast opengl-rendering of lens flares
(2000). https://www.opengl.org/archives/resources/

features/KilgardTechniques/LensFlare/

12. King, Y.: 2d lens flare. In: M. DeLoura (ed.) Game Pro-
gramming Gems, pp. 515–518. Charles River Media, Inc.,
Rockland, MA, USA (2000)

13. Lee, S., Eisemann, E.: Practical real-time lens-flare ren-
dering. In: Computer Graphics Forum, vol. 32, pp. 1–6.
Wiley Online Library (2013)

14. Light, I., Magic: Openexr (22014). http://www.openexr.
com

15. Mchugh, S.: Understanding camera lens flare
from cambridge in colour (2005). http://www.

cambridgeincolour.com/tutorials/lens-flare.htm

16. Pixar: The imperfect lens: Creating the look of wall-e.
wall-e three-dvd box (2008)

17. Sekulic, D.: Efficient occlusion culling. GPU Gems pp.
487–503 (2004)

18. Steinert, B., Dammertz, H., Hanika, J., Lensch, H.P.:
General spectral camera lens simulation. In: Computer
Graphics Forum, vol. 30, pp. 1643–1654. Wiley Online
Library (2011)

19. Syrp: Genie mini motion controller (2016). https://

syrp.co.nz

https://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
https://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
https://goo.gl/OOmIkB
http://doi.acm.org/10.1145/2010324.1965003
http://doi.acm.org/10.1145/2010324.1965003
https://www.opengl.org/archives/resources/features/KilgardTechniques/LensFlare/
https://www.opengl.org/archives/resources/features/KilgardTechniques/LensFlare/
http://www.openexr.com
http://www.openexr.com
http://www.cambridgeincolour.com/tutorials/lens-flare.htm
http://www.cambridgeincolour.com/tutorials/lens-flare.htm
https://syrp.co.nz
https://syrp.co.nz

10 Walch et al.

20. Tocci, M.: Quantifying veiling glare (zemax
users knowledge base) (2007). http://www.

zemax.com/os/resources/learn/knowledgebase/

quantifying-veiling-glare

21. Towell, J.: A brief history of the most over-used special
effect in video games: Lens flare (2012). https://goo.

gl/244iVo

22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.:
Image quality assessment: From error visibility to struc-
tural similarity. IEEE Transactions On Image Processing
13, 600–612 (2004)

23. Woerner, M.: J.j.abrams admits star trek lens flares are
ridiculous (interview) (2009). https://goo.gl/ETgzXW

http://www.zemax.com/os/resources/learn/knowledgebase/quantifying-veiling-glare
http://www.zemax.com/os/resources/learn/knowledgebase/quantifying-veiling-glare
http://www.zemax.com/os/resources/learn/knowledgebase/quantifying-veiling-glare
https://goo.gl/244iVo
https://goo.gl/244iVo
https://goo.gl/ETgzXW

	Introduction
	Related work
	Workflow
	Results
	Conclusion and future work

