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A B S T R A C T

Bipartite graphs are typically visualized using linked lists or matrices, but these visualizations neither scale well
nor do they convey temporal development. We present a new interactive exploration interface for large, time-
dependent bipartite graphs. We use two clustering techniques to build a hierarchical aggregation supporting
different exploration strategies. Aggregated nodes and edges are visualized as linked lists with nested time series.
We demonstrate two use cases: finding advertising expenses of public authorities following similar temporal
patterns and comparing author-keyword co-occurrences across time. Through a user study, we show that linked
lists with hierarchical aggregation lead to more insights than without.

1. Introduction

A bipartite graph is a special class of graphs, where the vertex (or
node) set V of the graph =G V E( , ) can be partitioned into two disjoint
nonempty sets V1 and V2, both of which are independent [1]. In a
weighted bipartite graph, every edge connecting a node of V1 with a
node of V2 has a weight of ω ≥ 0. Data sets representing bipartite
graphs can be found in many disciplines, ranging from biology, where
nodes represent genes and conditions [2–4], over document analysis,
where nodes can represent different categories of named entities [5,6],
to social network analysis, where nodes can be institutions and projects
[7].

Visualizations of bipartite graphs can effectively reveal connections
between the two sets of nodes. Classic visualization techniques, like
linked lists or matrices, can display up to a few hundred nodes and
edges. However, many data sets, such as the IEEE Visualization
Publication collection [8], rather have thousands or tens of thousands
of elements. Often, these data sets are of interest to a general lay au-
dience, such as the Media Transparency Database, containing all media
advertising expenses of public authorities in Austria since 2012 [9].
These data sets are collected over a longer period of time and therefore
also contain an interesting temporal component. For instance, users
might be interested to compare author-keyword relationships in a
publication database across different time periods or to detect public
authorities following similar advertisement trends over time. The goal
of this work is therefore to find an easily understandable interactive
visualization, which allows lay users to casually [10] explore connec-
tions in large bipartite graphs over time.

In this paper, we propose an interactive visualization technique
Dynamic Bipartite Cluster Flows (Dynamic BiCFlows) combining hier-
archical aggregation (i.e., hierarchical grouping of nodes) and filtering
(i.e., removing nodes) to visualize large time-dependent bipartite
graphs. The user can gradually drill down from an overview to the most
detailed level. Depending on the exploration level and group size, we
filter the groups to show only the most relevant items. In contrast to
BiCFlows [11], Dynamic BiCFlows not only allows exploration of the
connections between the two sets of nodes, but also the temporal de-
velopment of the edges. To support such a temporal exploration, we
introduce two clustering methods with interactive drill-down strategies
and demonstrate the usefulness of these approaches with two applica-
tion cases. In summary, our paper has three main contributions:

1. a new visualization and interaction design for interactive visual
exploration of large, time-dependent bipartite graphs,

2. two different hierarchical aggregation and filtering approaches for
linked list visualizations, supporting the exploration of the temporal
development of bipartite graph data,

3. the results of an insight-based user study, where lay users explored a
large bipartite graph containing advertising expenses of public or-
ganizations, showing that hierarchical aggregation encourages users
to perform a longer exploration of the data, leading to more (un-
expected) insights.

2. Related work

The most common visual encodings of graphs are node-link
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diagrams and matrix-based representations [12,13]. For bipartite or k-
partite graphs, nodes of the k different sets can be differentiated by
color in node-link diagrams (see Fig. 1 middle right or the graph view in
Jigsaw [5]), or nodes of one set can be attracted to nodes of the other
set, anchored at fixed locations [14,15] (Fig. 1 right). Bipartite graphs
shown as biadjacency matrices have rows and column keys corre-
sponding to the nodes of the two independent sets, with cells re-
presenting their connections (e.g., Fig. 1 left or Dormann et al. [16]).
Another common way to visualize k-partite graphs are linked lists,
where the nodes of the independent sets represent the list entries and
edges between these lists show their connections [5,7,16–19] (illu-
strated in Fig. 1 middle left). While this visual encoding is easily un-
derstandable and allows for efficient scanning of the node labels, it does
not scale well with the number of nodes. To deal with a number of
nodes larger than can fit in the screen, these examples use scrolling [5],
filtering according to node attributes [18], or focus+context re-
presentations [17]. However, when having thousands of nodes in one
set of linked lists, these approaches lead to extensive interaction efforts,
information loss, or visual clutter.

Common strategies to visualize large graphs – and large data sets in
general – are filtering (i.e., removing items) and aggregation (i.e.,
grouping items) [13,20]. For instance, GrouseFlocks iteratively con-
structs a graph hierarchy through attributes of the underlying graph
data [21]. The user can then interactively create cuts through the graph
hierarchy and visualize the cut graph in a node-link diagram with ag-
gregated meta-nodes. Similar nested meta-node circles were recently
also used to create representative Graph Thumbnails of large graphs
consisting of thousands of nodes and tens of thousands of edges [22].
Alternatively, aggregated meta-nodes can be visualized as matrices
embedded within a node-link diagram [23,24] or as zoomable ad-
jacency matrices [25]. These examples aggregate nodes either based on
node attributes or based on topological properties, such as graph cli-
ques. To the best of our knowledge, hierarchical aggregation of nodes
has not been investigated for linked list visualizations or other visua-
lizations of large bipartite graphs.

In bipartite graphs, biclustering [26] (or co-clustering [27]) finds
groups of coherent items. Biclustering is mostly used in bioinformatics
for studying gene expression data [2–4] and in document classification
[27,28]. Essentially, biclustering simultaneously rearranges rows and
columns of the biadjacency matrix to form clusters of certain similarity.
Visualization of biclustered graphs use color-coded matrices [29–31],
node-link diagrams with cluster enclosings [32], or matrices embedded
into node-link diagrams [33–35]. Biclustering has also been used to
bundle edges of bipartite graphs shown in linked lists [6,36]. Edge
bundling of linked lists can improve the perception of the visualization
and the quality of the analysis [37]. Since only edges are bundled, these
lists still do not scale well with the number of nodes. In contrast, we
present different strategies for aggregating the nodes in linked lists.

Recently, new visualization techniques for biclustered graphs with
thousands of nodes have been introduced, such as BiDots [38] and VIBR

[39]. However, these techniques use more complex visual encodings
and require user interactions or legends to reveal any node labels. In
contrast, our goal is to use a simple visualization that supports labeling

of aggregated nodes so that it reveals the most essential information on
the first glance.

Another recent approach to visualize very large unweighted bi-
partite graphs was presented by Pezzotti et al. [40]. They hierarchically
cluster nodes of both sets independently based on their connectivity
with the adjacent set, and place landmark vertices of HSNE clusters in
two parallel axes connected by edges. These landmarks can be brushed
to reveal lower hierarchy levels. With their C++ implementation,
Pezzotti et al. visualize bipartite graphs with millions of nodes. In our
work, we use different clustering strategies, taking into account the
connectivity, but also the temporal development of edges, to create
hierarchical aggregations.

There is little evidence so far as to which approaches facilitate an
effective exploration of large bipartite graphs in practice. While BiDots
[38] and ViBr [39] were evaluated through informal interviews with
expert users, we contribute first results from a formal insight-based user
study of non-expert users exploring large bipartite graphs with hundreds
to thousands of nodes and edges.

All the visualization examples above are showing static graphs. In
dynamic graphs, the structure of nodes and links change over time [41].
These changes can be shown through animating a node-link diagram or
by mapping the temporal information to a spatial representation [41],
which can be juxtaposed, superimposed, or nested within the graph
[42]. For instance, Burch et al. [43] nest time-varying edge weights as
time series display in cells of an adjacency matrix. Yi et al. [44] com-
bine this approach with hierarchical aggregation by attributes (e.g.,
geographic regions) or connectivity, where cells show the temporal
distribution of a selected attribute. To the best of our knowledge, no
visualization technique for time-dependent bipartite graphs has been
proposed so far.

Time-varying edge weights can also be used for clustering a large
data set. There are numerous methods how to cluster time series data
[45,46]. In the field of visualization, time series clustering has been
used to reveal patterns of employee presence over a year and the time of
the day [47], DNA copy numbers [48], or sensor networks [49].
However, these clusters are not embedded in a graph structure and are
visualized as superimposed line charts [47], stacked color gradients
[48], or a 2D projection of items based on their time series similarities
[49]. In our system, we cluster nodes of both sets based on their time
series similarities, but we maintain the graph structure by visualizing
the connections between these clusters.

3. Visualization and interaction design

Our goal is to provide a broad audience access to a large, dynamic
graph data set through interactive visualization. The main requirements
for the visualization and interaction design of Dynamic BiCFlows
therefore are:

1. the visualization should scale up to thousands of nodes and edges,
2. the visualization and interaction design should be easily under-

standable for a lay audience,
3. it should provide some initial information on the first glance, and

Fig. 1. Common visualizations of bipartite graphs: biadjacency matrix (left), linked lists (middle left), node-link diagram with spring layout and color-coded nodes
(middle right), and anchored maps with one set of nodes fixed around a circle (right).
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4. it should support in-depth exploration of the data, such as identi-
fying clusters of similar elements of varying size and retrieving
connections of a selected element at a particular time.

To achieve Requirement 1, we use a combination of hierarchical
aggregation and filtering. We present two hierarchical clustering ap-
proaches for time-dependent bipartite graphs (Section 3.1). Per cluster,
node filtering is performed based on ranking of accumulated edge
weights (Section 3.2).

To fulfill Requirement 2, we opted for a bipartite graph visualiza-
tion using linked lists (Section 3.2). Lists are ubiquitous and therefore
presumably easy to understand for visualization novices. In addition,
they can feature sufficiently large text labels so that users can gain some
initial understanding on the first glance. In contrast, the similarly
popular matrix view of bipartite graphs requires very short or 90∘ ro-
tated column labels.

Linked lists can easily get visually cluttered when showing a large
number of nodes and edges. To provide an overview of a large bipartite
graph (Requirement 3), we therefore present a new variation of linked
lists visualizations: we aggregate nodes based on the hierarchical
clusters and visualize the cluster-wise temporal evolution as nested time
series (see Fig. 2 and Section 3.2). Through the hierarchical node ag-
gregation, the visualization conceptually scales to an infinite number of
nodes.

To reveal full details (Requirement 4), we present exploration
techniques, such as drill-down, filtering, and details-on-demand, in
Section 3.3. As successively drilling down into the data may lead to a
loss of overview, we extend the list view by interactive context bars to
keep the user oriented.

3.1. Hierarchical aggregation

Hierarchical aggregation iteratively partitions the data into groups
of similar items so that, initially, a small set of group items can be vi-
sualized instead of thousands of individual items [20]. By subsequently
selecting grouped items, the users can interactively drill down from the
initial overview to a small subset of the data with similar character-
istics.

In general, groups can be derived from existing node hierarchies,
from datacube aggregations if nodes are associated with multiple at-
tributes [50], or clustering. We are interested in time-varying bipartite
graphs, where nodes may appear and disappear over time, and where
edge weights between pairs of nodes may increase or decrease. We
assume that there are no further node or edge attributes or node hier-
archies. We therefore use clustering to create a hierarchical grouping of
the nodes. We use two clustering approaches that group items based on
different characteristics:

1. Biclustering, which groups items to maximize the graph modularity
so that clusters contain densely connected sets of nodes
(Section 3.1.1). Using this clustering approach, users can explore
tightly connected groups, such as groups of authors sharing a lot of
common key words in a publication database.

2. Time series clustering, which groups nodes based on their time series
correlation so that nodes with a similar temporal characteristic re-
main in the same cluster (Section 3.1.2). This clustering approach
facilitates exploration based on common temporal trends, such as
groups of media organizations showing similar seasonal patterns for
receiving advertisements.

As input data, we consider tabular data, where each row i contains
two entities – one from set V1 and one from set V2 – and an associated
time. In addition, each row may be associated with a quantitative
weight ωi (Fig. 3 left). For instance, in our Media Transparency Data-
base use case (Section 4.1), each row consists of the name of a public
authority (V1), the name of a media corporation (V2), the year and

quarter for which the expenses were reported (t), and the advertisement
expenses in Euro (ω). The output of our clustering methods is a k × k
biadjacency matrix C (Fig. 3 right), where the rows correspond to the k
clusters of node set V1, the columns to the k clusters of node set V2, and
the cells to the number of aggregated edges (for unweighted bipartite
graphs) or the sum of aggregated edge weights (for weighted bipartite
graphs) between the respective clusters. We recommend to pick k< 10,
depending on the available vertical screen space, to minimize visual
clutter due to many edge crossings in the linked lists.

By subsequently selecting sub-clusters, the users can interactively
drill down from the initial overview to a subset of the data. The system
then clusters the nodes in the selected cluster and subsequently visua-
lizes only those items. Drill-down is possible until the cluster cannot be
further subdivided into smaller clusters.

3.1.1. Biclustering
A bipartite graph can be viewed as a weighted biadjacency matrix,

where rows represent nodes of set V1, and columns represent nodes of
the other set V2. Each matrix cell contains the corresponding edge
weight between two nodes from V1 and V2 (Fig. 4). Using such a data
representation, the temporal component gets lost in the resulting vi-
sualization, as all weights between two nodes across all time steps are
aggregated into a single cell (see Fig. 4, cell B2). Temporal exploration,
however, can be achieved by filtering the displayed time steps (see
Section 3.3.2).

Biclustering rearranges the rows and columns of the matrix to create
coherent blocks. Biclustering is an NP-hard problem [51], but many
algorithms that optimize search heuristics have been developed. In our
system, we use an algorithm that tries to maximize the modularity of
the bipartite graph for a predefined number of clusters [52]. Modularity
is a common graph clustering quality measure that quantifies the trade-
off between the edge density within clusters and between clusters [53] to
obtain clusters of dense sub-graphs with minimal edges between these
clusters. In contrast to other biclustering algorithms, this approach can
also handle weighted biadjacency matrices. By choosing a clustering
algorithm that maximizes the modularity, edge densities of diagonal
edges in the linked lists are minimized, such as depicted in Fig. 5b as in
contrast to Fig. 5a.

Biclustering algorithms assume a specific structure of the underlying
matrix. Commonly used structures are the block diagonal structure,
where each row and column is assigned to exactly one cluster, and the
checkerboard structure, where each row and column is assigned to
multiple clusters, so that each cell is assigned to exactly one cluster. For
our system, we use a block diagonal structure so that each node is as-
sociated with only a single cluster. Fig. 5b illustrates block diagonal
biclusters as dense sub-matrices along the biadjacency matrix diagonal
and large horizontal edges in the linked lists.

When the user drills down from the initial overview to a subset of
the data, the system clusters the sub-matrix of the selected cluster
(Fig. 6). In the linked lists, we visualize the nodes and edges of this sub-
matrix, as well as nodes from other clusters connected to at least one
node from the selected cluster. The user can drill down until the matrix
to be clustered has only a single row or column, or if the bipartite graph
is too dense to be clustered further.

3.1.2. Time series clustering
To group nodes with similar temporal developments, we first ac-

cumulate the edge weights into uniform, discrete time bins (e.g., years
or quarters) so that each node is associated with a time series (Fig. 7).
For each set, we then compute the pairwise correlation distances be-
tween all nodes and apply agglomerative clustering to the resulting
matrices to retrieve up to 2 × k clusters for both node sets in total. As a
result, each cluster contains nodes of one set with similar time series
(i.e., time series with minimal correlation distances). This means, the
variance of the aggregated time series of all nodes in all clusters is as
small as possible. This allows us to visualize a representative aggregated
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time series for each cluster (see Fig. 2).
Since the two sets of nodes are clustered independently, the mod-

ularity of the resulting clustered bipartite graph can be rather low. This
can lead to high edge densities between clusters, as illustrated in

Figs. 5a and 8 a. However, the visual clutter can be reduced by max-
imizing the edge density of opposite clusters in the linked lists so that
high density edges are mostly horizontal. This can be achieved by a
permutation of the columns of the biadjacency matrix C to maximize
the trace of the matrix [54]. The selected permutation defines the order
of the clusters of V2 in the second column of the linked list visualization
(Fig. 8b).

However, even with reordered cluster columns, graph modularity

Fig. 2. Dynamic BicFlows with nested time series visualization per cluster per set. Each cluster contains legal entities (left, purple) or media companies (right, green)
following similar temporal developments of advertisement expenses or incomes, respectively. The gray stacked bars show individual cluster items sorted by accu-
mulated edge weights, where the most important items receive permanent labels. The brown edges indicate the money flow from clusters of legal entities to clusters
of media companies (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 3. Input data (left) in tabular format and output data (right) with k clusters
for both sets in a biadjacency matrix (luminance indicates the accumulative
edge weight).

Fig. 4. The biadjacency matrix corresponding to the tabular data from Fig. 3
left.
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can be quite low compared to biclustering (cf., Figs. 5b and 8 b). To
avoid information loss when drilling down, we therefore perform an
asymmetric sub-clustering: we distinguish whether a user selected a
cluster of V1 or of V2 for further sub-clustering. We then select the
corresponding rows (if selecting a cluster node of V1) or columns (if
selecting a cluster node of V2) from the reordered biadjacency matrix.
For the other set, we maintain the previous clustering and only filter the
nodes that do not link to nodes of the selected node cluster (Fig. 9). For
the selected set, we perform a time series clustering of the nodes in the
selected cluster.

Fig. 5. Sketch of a biadjacency matrix and its associated linked lists representation for an arbitrary grouping (left) and with a biclustering based on a block diagonal
structure (right).

Fig. 6. A biadjacency matrix with =k 3 biclusters shown in brown (left) and
one bicluster selected (red). The selected sub-matrix is further biclustered
(right). The four lime-green sub-matrices (left) contain edges between nodes of
the selected bicluster and nodes of other biclusters (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.).

Fig. 7. The two time series matrices (rows are nodes, columns are time bins) for
the two node sets corresponding to the tabular data from Fig. 3 left.

Fig. 8. Sketch of a biadjacency matrix and its associated linked lists of three clusters per set: unordered clusters from Fig. 5a (left) and reordered cluster columns to
minimize high density diagonal edges in the linked lists (right).

Fig. 9. A biadjacency matrix with =k 3 clusters for both sets (left) and one
cluster of V2 selected (red). Unconnected nodes of V1 are removed, and the
selected columns of V2 are further clustered (right) (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.).
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3.2. Visual encoding

To visualize the hierarchically aggregated bipartite graph, we use
two parallel vertical lists of nodes, where – similarly as for Sankey
diagrams [55] and parallel sets [56] – the thickness of an edge con-
necting two nodes is defined by its edge weight, and the rank of each
node is defined by its accumulated edge weights ∑ωi (Fig. 10). We apply
the concept of hierarchical aggregation to such linked lists by grouping
nodes and edges into their respective clusters. Clusters are shown as

aggregate cluster bars, where V1 is shown in purple and V2 in green. For
each cluster bar, we visualize the contained nodes as stacked bars.
Within each cluster, nodes are ranked according to their accumulated
edge weights so that the most important nodes are shown at the top.

Since we initially display a large number of nodes per cluster, we
filter nodes with small edge weights. Given the sum of all edge weights
in the entire graph ∑ω, the smallest displayable unit for a node h, and
the total height H of the visualization, we only display nodes, which
fulfill the following criterion:

Fig. 10. BiCFlows showing individual nodes (gray), aggregated filtered nodes (dark gray), cluster bars of nodes (purple and green), as well as their connections
(brown) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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We aggregate all nodes that would be encoded smaller than the smallest
acceptable height h in the list into a dark gray bar on the bottom of the
stacked bars. For our use cases, we set h to two pixels and adapt the
height of the visualization H dynamically to the display size.

We implemented two labeling methods: The first method places
node labels whenever there is enough space next to the stacked bars.
We use a 12 pixel font-size, so we place labels whenever a node fulfills
the criterion in Eq. (1) for =h 12 (Fig. 2). Using this method, the
number of node labels can be quite small, however. The other method
tries to place as many labels as possible for each cluster by stacking
node labels next to a cluster bar (Fig. 10).

To reveal the temporal development, we show an aggregated time
series visualization for each cluster as nested visualization. There are
several options how to visualize aggregated time series, such as using
stacked color-coded graphs [57], “temporal box plots” [58], or con-
fidence bands, which we chose due to their simplicity and scalability.
For each discrete time bin, we compute the mean edge weight of all
nodes, as well as the 95% confidence interval, where the mean devel-
opment is shown as a line, and the confidence band as half-transparent
overlay (Fig. 2). Like sparklines [59], these nested time series visuali-
zations are intended to convey a general trend and therefore do not
have axes labels. As they are nested within the cluster bars, the time
series are also scaled relatively to the overall weight of their respective
cluster. We only visualize the nested time series when aggregating
nodes through time series clustering, where the minimized correlation
distances between time series within a cluster ensure that an aggregated
time series visualization is representative for all nodes in the cluster.

3.3. Interactive exploration

Our system supports three interactive exploration mechanisms: drill-
down, filter, and details-on-demand. With these exploration techniques,
we follow the well-known visual information seeking mantra: “overview
first, zoom and filter, then details-on-demand” [60].

3.3.1. Drill-down
Drill-down is the essential interactive mechanism to reveal filtered

nodes from selected clusters by iteratively sub-clustering the selected
group. Users perform a drill-down by double-clicking a cluster bar.
Depending on the clustering method (see Section 3.1), we employ two
different drill-down methods: As biclustering creates coherent groups of
both node sets (see Section 3.1.1), drill-down operates symmetrically in
this case. When selecting a bicluster, all nodes that do not have con-
nections to the nodes in the selected cluster are discarded (gray sub-
matrices in Fig. 6 left). Nodes of other clusters connected to nodes in the
selected cluster (lime-green sub-matrices in Fig. 6) are aggregated into
one group (lime-green group at the bottom in Fig. 11).

Time series clustering leads to less coherent groups so that the lime-
green bars at the bottom would grow considerably as the user drills
down. We therefore provide asymmetrical drill-down in this case: de-
pending on which list the user selects a cluster, we keep the entities of
the selected set within the selected cluster, as well as all connected
entities from the other set (Fig. 9).

To help users maintain orientation and keep an overview, we pro-
vide context bars on the side, where each bar shows the selected cluster
among the grayed out non-selected clusters. These bars are also used to
navigate back to a higher hierarchy level. In Fig. 11, the user selected a
large central cluster in the initial overview (indicated by the purple and
green bars on the outermost context bars).

3.3.2. Filter
Using multiple coordinated views, we also allow users to filter ac-

cording to time intervals or other categorical attributes, if available in

the data set, using linked bar charts (Fig. 11 left). To support interactive
exploration with a fast response and to keep the user oriented, we in-
itially perform clustering on the complete, unfiltered data set and keep
this clustering as the user filters nodes by interacting with the linked
bar charts. After applying the filter, we only recompute the edge
weights and reorder the nodes within the clusters, if necessary.

3.3.3. Details-on-demand
Users can request details-on-demand by either hovering nodes and

node labels, respectively, or cluster bars. In the first case, all connec-
tions of one individual node are highlighted in red. In the second case,
only connections of nodes in the hovered cluster are visualized
(Fig. 12). In both cases, a tooltip reveals detail about the selected node
and cluster, respectively, such as the aggregated edge weight, its tem-
poral development, and the number of nodes in the selected cluster.

Node highlights can also be triggered from linked text lists (see
Fig. 11 on the bottom left), where all entities of both sets are listed and
ranked according to their accumulative edge weight. These lists can
also be searched for specific entities.

3.4. Implementation

Dynamic BiCFlows is implemented using a client-server infra-
structure to separate the computationally expensive clustering from the
user interface on the client side. The server is implemented with Python
and Numpy for efficient processing of large data structures. For bi-
clustering, we use the Python implementation of CoClust [52]. For time
series clustering, we use SciPy for the computation of the correlation-
based distance matrix, for the agglomerative clustering of the distance
matrix, as well as for the linear sum assignment optimization of the
inverted biadjacency matrix to minimize the weight of diagonal edges.

As our system is intended for visual exploration by lay users, we
host individual data sets as separate web services. For each data set, we
use CoClust to determine the optimal number of biclusters k in a pre-
computation step. In this step, CoClust computes multiple clusters and
finds the resulting biadjacency matrix with the maximum modularity.
For small browser windows, we decrease the number of clusters to
avoid visual clutter. The actual clustering is performed online, and sub-
clustering is invoked whenever a user drills down.

We performed performance tests using the Media Transparency
Database (see Section 4.1) on a consumer hardware (Intel i7-8750H
CPU with 2.20GHz and 16 GB RAM). We measured the time for con-
structing the biadjacency matrix from the original CSV file, as well as
the time to initially bicluster the entire dataset (Fig. 13). In total, the
server requires around 700 ms to read, convert, and cluster the latest
version of the dataset (2018, quarter 4: 71,780 entries, consisting of
1323 legal entities and 4538 media companies), and these computa-
tions scale linearly with the number of nodes in both sets ( =R .962 ).
Time series clustering of both sets takes approximately the same
amount of time. The initial clustering of the entire data set is therefore
only performed once when loading the page. Whenever the user selects
a cluster, the clustering results of the higher hierarchy levels are locally
stored, so that the user can quickly navigate back to previous views.

The client was implemented using D3.js [61] based on an existing
bipartite layout [62]. Crossfilter [63] was employed to quickly filter the
data set on the client side for the linked time slider, category bar chart,
and the lists of nodes.

4. Use cases

We will showcase the usefulness and discuss potential limitations of
Dynamic BiCFlows using two data sets:

1. the so-called Media Transparency Database [9], where all public
authorities of Austria have to report their advertisement expenses to
media companies above 5,000 Euros beginning from 2012
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(Section 4.1), and
2. the IEEE Visualization Publication collection [8], where meta-data of

all major IEEE visualization papers since 1990 are collected. Using
Dynamic BiCFlows, we visualize the author-keyword relations for
selected time intervals (Section 4.2).

Both data sets have thousands of nodes and fulfill the properties of a
time-dependent bipartite graph. The visualizations can be accessed
online [64].

4.1. Media transparency database

The Austria Media Transparency Database [9] is of great interest to
journalists to reveal relations between public and media organizations,
by media organizations themselves to investigate their competitors, and
to the general public to find out how their tax money is spent. The
database is updated quarterly, and journalists regularly parse the da-
tabase for new interesting money flows. In particular, they are inter-
ested to find out if certain ministries advertise in similar media and
which ministries spend a high amount of money for advertisement.
However, finding this information is tedious, since names of ministries
change across legislation periods, and some big media organizations
comprise dozens of sub-companies, which all show up as separate en-
tities in the database.

By 2018, the Media Transparency Database contained 1300 legal
entities, reporting advertising expenses to over 4500 media organiza-
tions. The reported expenses are not evenly distributed, with very few
very high values (e.g., around 22 million Euros aggregated advertise-
ment expenses issued from the government of the city of Vienna to the
daily newspaper Kronen Zeitung), and most of the expenses being
around 5,000 Euros. The highest modularity (0.5) was found for nine
biclusters (see Fig. 10).

Due to the large public interest, there are already a few online vi-
sualizations of the Media Transparency Database available, such as a
dashboard visualization by Rind et al. [65], a web service by Salhofer

et al. [66], and an interactive exploration interface for data journalists
supporting filtering, sorting, and tagging [19]. These existing visuali-
zations rely solely on filtering of the data and therefore only visualize a
very small fraction of the existing entities. With these visualizations,
users can get information about the most relevant legal entities and
media organizations. However, smaller transactions, for instance be-
cause advertising expenses are spread across multiple smaller media
organizations, cannot be revealed without specifically searching for
them.

Like these previous approaches, Dynamic BiCFlows reveals im-
portant legal entities and media organizations on the first glance. The
two top-most labels in Fig. 10 show the legal entity (Stadt Wien, i.e., the
government of the city of Vienna) and media organization (Kronen
Zeitung, the most popular newspaper in Austria) spending and receiving
the highest accumulated sums, respectively. These two nodes are
grouped into the same bicluster with other popular Austrian news-
papers, such as Heute or Kurier, and other legal entities spending high
amounts for advertising in these daily newspapers. The second-ranked
legal entity (Rundfunk und Telekom Regulierungs-GmbH, the Austrian
Regulatory Authority for Broadcasting and Telecommunications) is
contained in a different bicluster, which is ranked third in Fig. 10. Se-
lecting the cluster reveals that this legal entity mainly sponsors small
radio and TV stations, where most of them do not receive any adver-
tisement money from other legal entities. If only the ten top-ranked
media organizations were shown, not a single media organization re-
ceiving money from this authority would be visualized.

In contrast to the previous visualizations of the Media Transparency
Database, BiCFlows supports untargeted, casual exploration of the data.
When drilling into the data using biclustering, a frequently occurring
grouping reveals geographic proximity. Often, the groupings contain
smaller legal entities and media organizations located in the same re-
gions by just moving one hierarchy level down. This is not surprising,
since smaller entities tend to advertise in smaller and more local media.
Other clusters are related topic-wise. For instance, drilling down three
hierarchy levels reveals a cluster of many media organizations related

Fig. 11. Selected bicluster divided into seven sub-clusters, with connections to other biclusters (lime-green) and the context bars on the side providing an overview of
the entire data set for a selected time period (2011-2015). Linked bar charts (top left) allow for filtering according to categorical attributes (here: conferences) and
time. Ranked text lists of all entities (bottom left) can be used to search for hidden nodes (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.).

M. Waldner, et al. Journal of Computer Languages 57 (2020) 100959

8



to air travel, such as Airline Business or Air Transport World associated
with a single legal entity – the Vienna International Airport.

As one particular interest of journalists is the development of ad-
vertisement expenses and press subsidies over legislation periods, time
series clustering can help to discover systematic changes in advertise-
ment behavior. By drilling into the second media cluster in Fig. 2
(right), the sub-clustering reveals those media corporations with an
apparent upwards trend in the last few years. This cluster contains
primarily online media, such as Google, Facebook, web pages of large
news, but also regional radio stations. Selecting the forth cluster in the
left list of Fig. 2 yields legal entities with increasing expenses starting
from the end of 2017, when a new government was installed in Austria.
The largest sub-cluster contains exclusively ministries. However, most

of these ministries were renamed, and therefore also show up with
slightly different names in sub-clusters with a decreasing temporal
trend (see Fig. 14).

Other distinct temporal characteristics are reoccurring seasonal
peaks, such as shown in the bottom right cluster in Fig. 2. These sea-
sonal peaks are mostly associated with press subsidies to smaller TV or
radio stations, which are typically paid at the beginning of the year.

4.2. IEEE visualization publications

Co-authorship networks are a common use case for graph visuali-
zation, such as by Henry et al. [23]. Using the IEEE visualization
publication collection by Isenberg et al. [8], we pursue a different

Fig. 12. Hovering a cluster reveals only those nodes in the adjacent list, which have connections to the hovered cluster.
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approach to investigate commonalities between authors. We retrieved
4976 authors from the data set, as well as 2120 IEEE key terms these
authors used to classify their papers. Biclustering is employed to reveal
groups of authors that tend to use similar key terms – or, conversely,
groups of key terms that tend to be used by the same authors. Temporal
filtering is used to explore the developmment of those groups over time.
Over the entire time period, the modularity of this data set is rather low
(0.31 for seven biclusters). This means that the biclustered list will lead
to more edge crossings than the Media Transparency Database data set.

Fig. 15 shows the visualization of the seven biclusters in ten years
intervals. Notice how the fourth cluster with the top keyword “data
visualization” increased in the last decade compared to the previous
one. In contrast, the bottom cluster with the top keywords “computer
graphics” and “rendering” and the second cluster with top key words
“computational modeling” and “data mining” decreased considerably.

Selecting these clusters can yield interesting sub-topics. For in-
stance, selecting the fifth bicluster in Fig. 15 b reveals a sub-cluster with
application-specific key terms (Fig. 16 top). Sub-clustering this cluster
again reveals a cluster of key terms from the automotive industry with
its associated main authors (Fig. 16 bottom).

This example also explains why the clusters have a rather low
modularity: While K. Matkovic is the most common co-author of
H. Hauser according to DBLP [67], his publication keywords are much
broader than suggested by this clustering. Highlighting all key terms
used by H. Hauser by hovering his name, we discover that, in fact, his
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Fig. 13. Performance of hierarchical aggregation of the Media Transparency Dataset from the third quarter of 2012 to the fourth quarter of the given year: The top
chart shows the number of rows in the CSV files, the second chart shows the number of resulting nodes in the two sets, and the bottom chart shows the computation
time in seconds for contsructing the biadjacency matrix (gray) and performing the initial biclustering (dashed).

Fig. 14. The sub-cluster of legal entities showing the most distinct increase in
the new legislation period in Austria includes mostly ministries, such as the
finance, social, defense, and education ministry (a). Some ministries with
slightly different names ceased to exist (and advertise) at the same time, such as
the ministry for agriculture or the ministry for defense and sports (b).
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Fig. 15. Seven biclusters of authors and IEEE key terms of IEEE visualization publications in 10-year blocks (data from Isenberg et al. [8]).

Fig. 16. Two steps of sub-clustering on the fifth bicluster (H. Hauser – data models, analytical models) in Fig. 15 b.
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most commonly used key term in the IEEE Visualization Publication
data set is data visualization (used 19 times), followed by computational
modeling (used 12 times). The most commonly used key term in the
bottom cluster of Fig. 16 (“engines”) was used only four times by
H. Hauser. This means that biclustering is able to reveal meaningful
clusters of key terms in this example. However, the biclusters are not
necessarily representative for individual authors.

5. User study

The focus of our user study was to investigate the positive and ne-
gative effects of hierarchical aggregation on interactive, casual ex-
ploration of large bipartite graphs. We used the Media Transparency
Database introduced in Section 4.1 for our evaluation and used bi-
clustering for aggregating the data. We recruited 12 users (four females,
eight males, aged 25 to 56) with different backgrounds, including one
computer scientist, and all experienced computer and internet users.
One user had prior knowledge of the Media Transparency Database,
two had heard of it before, and nine did not know it at all. However, all
users were roughly familiar with the political and media landscape in
Austria.

As there is no measurable “ground truth” in this data set, we per-
formed an insight-based evaluation [68]. Insight has been defined as
“individual observation about the data by the participant” [69]. To reveal
whether users made observations, insight-based evaluations use an
open-ended think-aloud protocol, which afterwards is coded and
quantified for formal evaluation [68]. Users are encouraged to explore
the data as long as they think they can find something new.

As a baseline condition, we used a simplified version of BiCFlows,
which reduces the number of displayed items solely by filtering, but
does not perform any aggregation (see Fig. 17 b). Here, we refer to this
baseline as Cut-Off. All nodes that are too small to be labeled are ag-
gregated into “others” nodes (the bottom nodes in Fig. 17 b). The Cut-
Off visualization allows for highlighting of selected nodes like with
BiCFlows. Legal entities and media organizations that are filtered can

be selected from the linked text list to visualize all associated adver-
tisement expenses.

Both visualizations provided the ranked text list of nodes as addi-
tional browsing interface, but filtering through the bar charts was not
supported. We also did not show the nested time series to keep the two
interfaces as similar as possible. This means that the temporal aspect
was not considered in this evaluation, and we rather showed a single
aggregate of all entries in the Media Transparency Database up to 2017.

5.1. Hypotheses

Our main goal has been to investigate the benefits and limitations of
the hierarchical aggregation approach of BiCFlows compared to a
simple filtering approach, which is the common method to visualize the
Media Transparency Database [19,65,66]. Our assumption has been
that iteratively drilling down into the aggregated data would encourage
lay users to casually explore the visualized data in more detail and, as a
consequence, gain more knowledge. On the other hand, we also as-
sumed that BiCFlows would be perceived as more complex and harder
to use than the Cut-Off baseline visualization. We therefore formulated
two main hypotheses:

H1: With BiCFlows, users will gain more insights than with Cut-Off.
In particular, we expected that users would discover more legal

entities and media organizations, as well as transactions between them
(H1.1), that they would mention more entities with small accumulated
advertisement sums (H1.2), establish more connections between enti-
ties or reason about commonalities (H1.3), discover more unknown
entities or unexpected information (H1.4), and spend more time ex-
ploring the data (H1.5).

H2: BiCFlows will be perceived as more complex than Cut-Off.
As BiCFlows conveys more information on the first glance and re-

quires more interactivity for in-depth exploration, we expect that un-
trained users find BiCFlows more demanding to use.

Fig. 17. The two study conditions showing press subsidies reported in the Media Transparency Database: BiCFlows (left) and the baseline condition (Cut-Off) using
only filtering, but no aggregation (right). Annotations illustrate how the first three clusters on the left correlate with the four highest ranked legal entities listed in the
Cut-Off visualization (A: Rundfunk und Telekom Regulierungs-GmbH, B: Kommunikationsbehörde Austria, C: Stadt Wien and Bundeskanzleramt), and the four highest
ranked media companies contribute to two clusters (D: ATV Privat TV GmbH & Co KG, Red Bull Media House GmbH, and Puls 4 TV GmbH & Co KG, E: Community TV-
GmbH). The two bottom entities in the Cut-Off visualization comprise all other (“sonstige”) entities of both sets.
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5.2. Design

We employed a within-subjects design with visualization as in-
dependent variable, with the two levels BiCFlows (BiC) and Cut-Off
(CO). The presentation order of the two visualizations was counter-
balanced.

We used two subsets of the Media Transparency Database for the
evaluation. The first data set, comprising only advertising objectives,
contained 1226 legal entities and 3544 media organizations. We used
nine clusters with a modularity of 0.39. The second data set, containing
only press subsidies, had 68 legal entities and 885 media organizations
(Fig. 17). We also used nine clusters, yielding a modularity of 0.62. This
means that the second data set was smaller with more coherent groups.
The assignment of the two data sets to the two visualizations was also
counter-balanced.

The study was conducted using the Mozilla Firefox web browser on
a 27” monitor. Users had to fill out a consent form, a demographic
questionnaire, and then read a printed task description. Every condition
was preceded by a training period using a test data set. At the end of the
evaluation, users had to fill out a post-experiment questionnaire.

5.3. Analysis

We recorded all user sessions using screen capturing and audio re-
cording, and encouraged the participants to comment on everything
they see or experience during the data exploration. After the experi-
ment, we transcribed the audio recordings and performed open coding,
yielding nine insight categories listed in Table 1. For each user, we
aggregated the number of codes per condition and used these numbers
for comparing insights to verify hypotheses H1.1-H1.4.

In addition, we also recorded the exploration time (H1.5) and the
users’ subjective usability ratings through the System Usability Scale
(SUS) questionnaire [70] (H2). All obtained measures were statistically
analyzed using Wilcoxon Signed-Rank tests instead of t-tests, as not all
measures were normally distributed.

5.4. Results

To test hypothesis H1.1, we compared the number of unique entities
mentioned by the users. Using BiC, users mentioned significantly more
different entities compared to CO ( = =Z p10.5, .045, Fig. 18a). They
also mentioned significantly more transaction sums ( = =Z p1.5, .005,
Fig. 18b).We can thereby confirm our hypothesis H1.1: Users mention more
entities and transaction sums using BiCFlows.

For hypothesis H1.2, we calculated the quartiles of all cumulated
entity sums and compared the number of mentioned entities separately
for the lower three quartiles. However, the number of mentions is al-
most equivalent for Q1-Q3 (see Fig. 18c). This disproves our hypothesis
H1.2: Users do not mention more entities with smaller transaction sums
using BiCFlows.

To verify H1.3, we looked at utterances coded as duplicates, time,
geography, comparisons, and reasonings. Detection of duplicates was
generally low, and the difference between the two conditions is not
significant ( = =Z p2, .257, Fig. 18d). Mentions of temporal relations
were a little bit more common, but also comparable between the con-
ditions ( = =Z p14, .310, Fig. 18d). While no user made any remark on
geographic connections using CO, there were a few mentions of geo-
graphic relations using BiC (see Fig. 18f). Finally, users did not make
significantly more comparisons in either interface ( = =Z p16, .774,
Fig. 18g) and did not significantly reason more about the data using BiC
( = =Z p20, .234, Fig. 18h). We can therefore partially confirm H1.3:
users discovered some geographic connections between entities using BiC and
none with CO, but they did not find significantly more duplicates, temporal
relations, or other commonalities or differences between entities.

For hypothesis H1.4, we compared the number of unknown entities
and unexpected findings. There is no significant difference between the

number of unknown entities discovered in the data set
( = =Z p18.5, .633, Fig. 18i). However, users discovered more un-
expected information, which was indicated by astonished or dis-
believing reactions, using BiC than using CO ( = =Z p8, .045, Fig. 18j).
Thus, we can partially confirm our hypothesis H1.4: Users discovered more
unexpected information using BiCFlows, but did not find more unknown
entities.

To test H1.5, we compared the time each user spent exploring the
two different interfaces. Users spent more time exploring data using BiC
(23 min on average) than CO (17.5 min), which is a significant differ-
ence ( = =Z p6.5, .032, Fig. 18k). The average number of unique en-
tities mentioned per minute, however, is very similar ( = =Z p35, .754,
Fig. 18l). This confirms hypothesis H1.5: Users did not discover entities at a
faster rate using BiC, but rather spent a longer time exploring the data.

Finally, we compared the users’ ratings of the SUS questionnaire to
test hypothesis H2. With an average SUS score of 82, CO was rated
significantly higher than BiC with 72 ( = =Z p4, .028). This confirms
our hypothesis H2: Users perceived BiCFlows as more complex than the Cut-
Off approach.

5.5. Discussion

In summary, our study showed that users explored the visualization
for a longer time using BiCFlows than the Cut-Off visualization, which
does not use any hierarchical aggregation. The rate of insights per
minute was comparable. This means that users discovered more entities
(i.e., nodes) and more transaction sums (i.e., edges) when exploring the
Media Transparency Database using BiCFlows because they were en-
couraged to perform longer explorations. In particular, they made more
unexpected findings.

This higher number of insights, however, comes with a lower per-
ceived usability. While both interfaces were rated as excellent ac-
cording to SUS [70], their average scores are on the upper and lower
bounds of the excellent rating, respectively. Informal feedback indicates
that some users found “this arrangement into groups” irritating at the
beginning compared to direct selection of entities from a sorted list, but
gained sufficient understanding after exploring for a while. In parti-
cular, one user appreciated the possibility “to go into more detail” using
the hierarchically aggregated drill-down interface.

It was therefore surprising to us that users did not find more entities
with smaller expenses using BiCFlows than the baseline. We initially
reasoned that a major strength of hierarchical aggregation would be
that – after drilling down – the visualization would reveal those lower
ranked nodes and edges, which never show up in the Cut-Off visuali-
zation. From the video recordings, one observation was that partici-
pants usually only went down one or two hierarchy levels. Entities with
low accumulated edge weights are potentially not yet revealed. Using
BiCFlows, most users did not interact with the text lists. In contrast, the
major exploration interface of the Cut-Off approach was not the vi-
sualization itself, but the text list of ranked legal entities and media
organizations. When using the Cut-Off approach, most users scrolled
these lists far down and mentioned entities from these lists while
scrolling.

The most common unexpected findings across both conditions were
the advertising expenditures of the daily newspapers Kronen Zeitung,
Heute, and Österreich, as well as irritation about the fact that the more
popular TV station ORF1 receives less money than the smaller TV sta-
tion ORF2. However, users of BiCFlows mentioned more often that the
government of the city of Vienna (Stadt Wien) advertises in a large
number of media. We assume it is due to the aggregation into the large
“others” group in the Cut-Off visualization that users cannot easily
grasp the true number of edges of a selected node. Indeed, one user
mentioned during the study that being able to reveal all nodes in this
“others” group “would be a dream”.
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5.6. Limitations

When formally comparing two user interfaces in a study, a potential
validity threat is always not to be able to fully control for confounding
factors. One potentially confounding factor in our study is the text label

strategy, which differs between the two conditions. While we tried to
maximize the number of node labels per group in BiCFlows to maximize
the expressiveness of the cluster nodes, there is only a single label for
each node in the Cut-Off visualization (see Fig. 17 b). This resulted in
up to three times as many node labels in BiCFlows compared to the Cut-
Off visualization. This can be an alternative explanation for the higher
number of mentioned entities using BiCFlows. This can also partially
explain why the users found the interface more complex initially. We
therefore created the sparser labeling method shown in Fig. 2.

Since we did not systematically vary the data characteristics, our
study also does not reveal how the size of the data set and the mod-
ularity of the clusters influence the effectiveness and understandability
of the visualization. With more data, the system response will be slower
and users will have to perform more interaction steps to reveal weaker
nodes. With lower modularity, the meaningfulness of the visualized
biclusters will decrease and may lead to misinterpretations of the data.

Generally, we could not thoroughly evaluate the quality of the
coded comparisons, reasonings, and temporal or geographical insights,
because such a quality analysis would require ground truth that does
not exist for this dataset. For a deeper understanding of hierarchical
aggregation based on graph topologies, future studies could investigate
how users characterize commonalities of cluster elements to assess
whether they correctly interpret the grouping. An example for the
present dataset would be whether users believe that clusters were de-
rived based on geographical locations of entities and incorrectly con-
clude that all legal entities and media organizations of a certain region
are present in a selected cluster.

Finally, we did not thoroughly investigate the time-varying aspect
of the dataset in this study. As a consequence, the number of mentioned
temporal relations was quite low in both conditions (see Fig. 18d). In

Fig. 18. Box plots of the number of coded insights per category (Table 1), as well as exploration times in minutes (k) and mentioned unique entities per minute (l).
The left orange box plot shows the results of BicFlows, the right blue one of the Cut-Off visualization (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.).

Table 1
Coding categories of think-aloud protocols.

Code Description

Entities A mentioned legal entity or media organization.
Sums Mentioned transaction sums between one legal entity and

one media organization, or a total sum spent by a legal
entity or received by a media organization.

Duplicates Discovered entities with same or similar name,
e.g., google.at and google.de,
where users explicitly mentioned that these are the same.

Time Quarters, years, or periods mentioned.
Geography Geographical connections made for certain entities,

e.g., “DORF TV is probably from Upper Austria too,
because it’s in the same group as other media
organizations
from Upper Austria.”

Comparisons Comparisons between entities or time periods,
e.g., “ÖBB spent 19 million Euros, but compared to Stadt
Wien
that’s nothing.”

Reasoning Generating hypotheses to explain an observation,
e.g., “Heute, Krone, and Österreich receive most money,
that’s probably because they have most readers.”

Unknown Entities Entities that were unknown to the user,
e.g., “a3ECO? - Never heard of it before.”

Unexpected Findings Unexpected findings or astonishments,
e.g., “I can’t believe Stadt Wien spends that much money.”
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the future, it will be necessary to formally evaluate the usability of the
interface and the expressiveness of the visual encoding for the ex-
ploration of a large, time-dependent bipartite graph, such as shown in
Fig. 2.

6. Conclusions

Dynamic BiCFlows is a new interactive visualization method to
display large time-dependent bipartite graphs by combining hier-
archical aggregation and filtering in linked lists. We explored two data
sets with thousands of nodes and edges using two different exploration
strategies: (1) aggregation through biclustering in combination with
temporal filtering and (2) aggregation through time series clustering.
We showed how the first method can be used to track the development
of coherent groups over time and how the second method reveals
groups of entities with similar temporal trends.

From our evaluation, we conclude that the major strength of hier-
archical aggregation for large bipartite graphs is that users are en-
couraged to perform a deeper exploration of the data. As a con-
sequence, they have more insights and discover more unexpected
information. The limitation of such a hierarchical aggregation is a
higher cognitive demand – at least initially – and a lower perceived
usability for a lay audience. Based on these observations, we conclude
that hierarchical aggregation is beneficial if the goal is to encourage
users to perform a deep exploration of a large bipartite graph to dis-
cover unexpected information. However, if the goal is to provide a
simple interface to primarily look for specific entities in a static bi-
partite graph, a visualization based on simple filtering combined with a
search tool seems to be the more promising option.

For our use cases, we employed data sets with tens of thousands of
entries, leading to thousands of nodes and edges, and dozens of time
steps. In the future, we plan to extend our approach to much larger data
sets. This will require significantly faster or incremental clustering
methods. In addition, users will have to drill down more hierarchy le-
vels to reveal all nodes. We also plan to investigate alternative visual
encodings and interaction techniques to lower the initial cognitive de-
mand and keep non-expert users engaged.
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