
Simulated Annealing to Unfold 3D Meshes
and Assign Glue Tabs

Thorsten Korpitsch
TU Wien

Vienna, Austria
e0152943@student.

tuwien.ac.at

Shigeo Takahashi
University of Aizu
Fukushima, Japan

takahashi@acm.org

Eduard Gröller
TU Wien

VRVis Reasearch Center
Vienna, Austria

groeller@cg.tuwien.ac.at

Hsiang-Yun Wu
TU Wien

Vienna, Austria
wu@cg.tuwien.ac.at

ABSTRACT
3D mesh unfolding transforms a 3D mesh model into one or multiple 2D planar patches. The technique is widely
used to fabricate papercrafts, where 3D objects can be reconstructed from printed paper or paper-like materials.
The applicability, visual quality, and stability of such papercraft productions is still challenging since it requires
a reasonable formulation of these factors. In this paper, we unfold a 3D mesh into a single connected 2D patch.
We also introduce glue tabs as additional indicators in order to provide users with extra space to apply glue for
better reconstruction quality. To improve space efficiency, we do not apply glue tabs on every edge, while still
guaranteeing the stability of the constructed paper model. A minimum spanning tree (MST) describes possible
unfoldings, whereas simulated annealing optimisation is used to find an optimal unfolding. Our approach allows
us to unfold 3D triangular meshes into single 2D patches without shape distortions, and employing only a small
number of glue tabs. A visual indicator scheme is also incorporated as a post-process to guide users during the
model reconstruction process. Finally, we qualitatively evaluate the applicability of the presented approach in
comparison to the conventional technique and the achieved results.

Keywords
3D mesh unfolding, Simulated annealing, Glue tabs, Graph theory

1 INTRODUCTION
Papercraft is a popular art form, where people create
2D or 3D objects from cardboard or paper as shown in
Figure 1. To achieve this, a 3D mesh representing the
object is unfolded into a single or multiple 2D patches,
which can then be printed and used to reconstruct the
model in 3D. Possible models range from simple ones,
such as paper aeroplanes, to complex ones, such as
buildings. Recently, papercraft approaches are also
used in combination with self-folding materials to form
structures in an automatic fashion [1]. As demonstrated
by Takahashi et al. [19], unfolding a 3D triangular mesh
into a single patch, in contrast to multiple patches, eases
the reconstruction process for users. However, finding
an unfolding, in which no pair of faces overlaps with
one another and without distorting the original mesh is
a difficult task. More specifically, it has been proven
to be an NP-complete problem [8]. Reconstruction of a
model can be hard even with indicators that show which
edges should be glued together [19].
Glue tabs are essential as they allow users to build clean
3D models and guide them during the reconstruction
process. In this paper, we propose a technique to unfold
a 3D mesh with a minimum number of glue tabs. This
eases the reconstruction of models by guiding edges
that should be glued together, as well as providing users
sufficient surface to apply glue. The addition of glue

(a) (b)
Figure 1: An example of a papercraft model, including
(a) a 3D cow model and its corresponding (b) single
unfolded patch.

tabs increases the complexity of finding an overlap-free
unfolding, due to the combinatorial complexity of se-
lecting edges where to attach glue tabs. We calculate
minimum spanning trees of the dual graph of the 3D
mesh, which describe possible unfoldings. Simulated
annealing optimisation is used to find an overlap-free
unfolding. Glue tabs are pre-calculated and treated ana-
logue to mesh faces when unfolding the 3D model.

We incorporate trapezoidal glue tabs due to their pop-
ularity. Advantageously a trapezoid consists of two
triangles, so that we can consider glue tabs as addi-
tional faces of the 3D mesh and apply similar overlap-
detection when searching for a feasible solution. Fur-
thermore, this shape gives users more space than a sim-

1

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

47

Vol.28, No.1-2, 2020

https://doi.org/10.24132/JWSCG.2020.28.6

kiv
Rectangle



ple triangle. It is also preferable to a rectangle as it takes
less space. As the glue tabs size increases, the difficulty
of finding an overlap-free unfolding also increases. Our
contributions include the following:

• Introduction of a minimum number of glue tabs to
mesh unfolding problems.

• A new meta-heuristic approach to finding unfold-
ings of 3D meshes.

• Proof that the number of necessary glue tabs can be
optimally pre-computed for each unfolding patch.

The remainder of this paper is structured as follows:
Section 2 discusses conventional mesh unfolding and
optimisation techniques. Section 3 describes the con-
cepts used in this paper. In Section 4, we describe nec-
essary steps of the method. Section 5 brings insight into
the implementation. Section 6 shows several experi-
mental results generated using our approach and eval-
uates quantitatively and qualitatively. Section 7 sum-
marises the findings and provides an outlook on future
work.

2 RELATED WORK
This section focuses on previous work done on the topic
of optimising the unfolding of 3D models and also ex-
plains the differences to the proposed approach.

2.1 Optimised Unfolding of 3D Meshes
Mesh unfolding has different applications, such as cre-
ating papercraft models [16, 19] and the creation of
models from self-folding materials [6]. Some tech-
niques employ mesh deformation [2, 12], in order to
relax the problem. Mitani et al. [12] and Chang et
al. [2] propose methods that allow mesh simplifica-
tion as a pre-processing step. Also, the theoretical per-
spectives [14] of the problem have also been explored.
Some authors study different types of target meshes, for
example, orthogonal polyhedra [20]. The most relevant
work to ours is by Takahashi et al. [19], who proposed
a genetic-based algorithm to find a single connected
patch for printing purposes. They unfold 3D models
without distorting or editing the original 3D model. The
key concept of unfoldability is borrowed from topologi-
cal surgery, in order to guarantee an unfolded patch can
be stitched together along the corresponding cut edges.

Contrary to the work done by Takahashi et al. [19] our
paper explores a meta-heuristic simulated-annealing
approach to find unfoldings. Simulated annealing is
easy to implement compared to genetic algorithms and
it is more likely to find an optimal solution compared
to a greedy algorithm [16].

Another key conventional approach is investigated by
Straub et al. [16]. They explored unfolding and at-
taching glue tabs on all cut edges. They also explored

the removal of overlaps by introducing new subdivi-
sions to the mesh. A greedy algorithm optimises the
unfolding and resolves overlaps. Glue tabs that have
been added to an unfolding are optimised, i.e. changed
in size to avoid overlaps, after an initial unfolding has
been found. For printability, the unfolding is then sep-
arated into multiple cut-out sheets if it does not fit on a
single one.

In this paper, the proposed algorithm examines all pos-
sible glue tabs in advance and selects a minimum num-
ber thereof at each unfolding iteration. To the best of
our knowledge, the simultaneous handling of unfolding
and glue tabs has not been explored in the state-of-the-
art. Our technique is an improvement of the approach
studied by Takahashi et al. [19], where reconstructing a
3D model is facilitated if the mesh is unfolded into just
a single patch.

2.2 Optimisation Techniques
Since the 3D mesh unfolding problem is an NP-
complete problem [8], optimisation techniques are
often used to find a solution. Trying all combinations
would not be practical in most of the cases. Many
optimisation techniques are well explored, including
greedy algorithms [5] or heuristic optimisation tech-
niques [11]. Simulated annealing is a well-known
optimisation technique [9] that is widely applied in
computer science [4] and other scientific fields [13, 18].

Data: Configuration P, Max Temperature tmax
Result: Optimised Configuration P

1 Set t = tmax;
2 while t > 0 do

/* Random step to generate P′ from P */
3 Create P′ from P;
4 if energy(P′) ≤ energy(P) then
5 Set P = P′;
6 else if rand(0,1) ≥ exp(−(energy(P)−energy(P′))/kB/t)

then
7 Set P = P′;
8 Decrease t;
9 end

Algorithm 1: The pseudo-code of simulated an-
nealing [9].

Algorithm 1 depicts the concept of a simulated anneal-
ing approach, where a configuration P is optimised by
minimising its energy. In each iteration, a new config-
uration P′ is created, and the energy is compared to the
previous configuration through the function energy(∗).
In each iteration, there is a probability to take a worse
configuration, to avoid getting stuck in local minima,
as shown at Line 6 in Algorithm 1. kB is a constant,
which should be adjusted and determined through ex-
periments.

Optimising 3D Mesh unfolding with simulated anneal-
ing has the distinct advantage over greedy algorithms,
that it is less likely to get stuck in a local minimum.

2

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

48

Vol.28, No.1-2, 2020

kiv
Rectangle



Compared to genetic algorithms, simulated annealing
is easier to implement and is good at approximating
a global optimum. Therefore, we chose simulated an-
nealing as the optimisation approach in our unfolding.

3 DEFINITION OF KEY CONCEPTS
In this section, the terminology used in this paper is
defined and key elements are described.

(a) (b)

Souce

Target	
Glue	tab

(c) (d)
Figure 2: (a) A triangular mesh M (black) and its dual
graph D (blue). (b) The MST T (green) and remain-
ing edges (brown) in the dual graph. (c) Bend-Edges
(dotted) and Cut-Edges (red). (d) Trapezoidal glue tabs
(green) with source and target edges.

Triangular Mesh M. The input for the algorithm is a
triangular mesh M (see black edges in Figure 2 (a)). A
mesh M is defined as a triple (VM,EM,FM), where VM ,
EM , and FM represent the sets of vertices, edges, and
faces, respectively.

Dual Graph D. Graph D = (VD,ED) is the dual graph
of the mesh M. For each face f ∈ FM , a dual vertex in
VD is first assigned, followed by connecting dual ver-
tices using a dual edge ED, if the two faces that enclose
the dual vertices are adjacent in M. In other words, the
dual graph D has an edge if and only if the two cor-
responding faces of M are separated by an edge in the
mesh [7].

The dual graph is then used to find an unfolding, since
a dual edge connects neighbouring faces. A dual edge
can either represent an edge that is cut or an edge that is
used for folding the papercraft. Note that each triangu-
lar mesh has only one corresponding dual graph, which
can be computed efficiently. This makes it a very com-
pelling concept for 3D mesh unfolding.

Minimum Spanning Tree (MST) T . From the dual
graph D, a MST T can be computed. Given a weight
c(e) to each edge e ∈ ED, a minimum spanning tree
T = (VT ,ET ), where VT =VD and ET ⊆ ED, is computed

by minimising the cost function ∑e∈ET
c(e) [3]. The

MST in combination with the dual graph is a viable
concept to calculate possible unfoldings, as explained
by Straub et al. [16]. To compute a MST, we need a
weight for each edge in the dual graph. Initially, we as-
sign a random weight between (0,1) for each edge in
our experiment. In practice, the weights are adjusted to
generate a better MST as the optimisation proceeds.

Unfolding. An unfolding is defined as the planar rep-
resentation of a 3D mesh, and is computed by mapping
faces onto a 2D surface. One can unfold the faces of
a mesh one after another by referring to the MST T
described previously. This process is called mesh un-
folding. We follow the strategy of Takahashi et al. [19],
and define that the goal of an unfolded mesh will not
contain overlapping areas. A correct unfolding should
have only occlusion-free areas (see Figure 2 (b)).

Bend-Edge. The dual edge of e ∈ ET is defined as a
Bend-Edge (see dotted edges in Figure 2(c)), where
users can fold their papercraft by bending Bend-Edges.

Cut-Edge. The dual edge of each e ∈ ED/ET (brown
edges in Figure 2(b)) is called a Cut-Edge (red edges in
Figure 2(c)). Glue tabs can be applied to Cut-Edges.

Glue Tab. A glue tab is defined as an additional region
that does not exist in the original mesh. The idea of
incorporating these regions has been widely used to ap-
ply glue for attaching Cut-Edges of a papercraft. It can
have different forms, while in this paper, we introduce
trapezoid glue tabs (Figure 2(d)) as our default setting,
due to its popularity in the community.

4 UNFOLDING MESHES WITH ADDI-
TIONAL GLUE TABS

Figure 3 shows the step by step (S1)-(S5) process of
our approach. We will describe the high-level idea here,
followed by the detail explanation in the corresponding
subsections.

Once a triangular mesh M is loaded (Figure 3(a)), in
(S1) the corresponding dual graph is computed (the
blue graph in Figure 3(b)). In (S2), a MST T is com-
puted (the green tree in Figure 3(c) and the Cut-Edges
in red). Based on this T , a minimum number of glue
tabs is selected (Figure 3(d)). The next step is to un-
fold the 3D mesh and assign glue tabs referring to the
MST T (Figure 3(e)). If any overlaps occur, we cre-
ate a different MST by changing an edge weight, and
return and continue with (S2). Otherwise, we optimise
the unfolding as described in Section 4.5, which results
in an unfolded patch with better space utilisation (Fig-
ure 3(e)). Figure 3(f) shows additional visual indicators
added during the post-processing. Steps (S1)-(S5) will
be explained in the following subsections.

3

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

49

Vol.28, No.1-2, 2020

kiv
Rectangle



(a)
(S1)
ÐÐ→ (b)

(S2)
ÐÐ→ (c)

(S3)
ÐÐ→ (d)

(S4)
ÐÐ→

(e)
(S5)
ÐÐ→ (f)

Figure 3: Steps (S1)-(S5) of the proposed unfolding process. (a) The input 3D mesh. (b) The dual graph (blue) of
(a). (c) MST (green) and Cut-Edges (red) of (b). (d) Minimal number of glue tabs. (e) The optimised unfolding,
and (f) the patch after the post-processing.

4.1 Dual Graph and Preparation (S1)
The dual graph D is computed initially (Figure 3(b)).
We iterate through all faces of the mesh and save a
dual edge for each pair of faces that share an edge. To
compute a MST later, each new dual edge is initially
assigned a random weight between (0,1). Note that
the weight can be also computed based on the angle
bounded by the two adjacent faces or other measures.
We choose a random approach here due to its better
performance in comparison to other measures. More
sophisticated measures, such as mesh structure analy-
sis, will be conducted in a future study.

Glue Tab Pre-Computation

In this step, we also initialise glue tabs. After comput-
ing the dual graph, we compute all possible glue tabs,
in order to link each dual edge to its corresponding glue
tab. For each edge e ∈ EM a glue tab is computed. The
height of the glue tab is 20% of the face size it will
be glued to. The long base length is 80% and the short
base length is 40% of the edge length it is attached to, as
shown in Figure 2(d). These parameters are determined
empirically to avoid an infeasible solution space.

4.2 MST Computation (S2)
A MST T is computed from the dual graph D using the
well-known Kruskal’s algorithm [10]. Recall that the
dual edges of ET are all Bend-Edges, while the dual
edges e ∈ ED/ET are all Cut-Edges (red edges in Fig-
ure 3(c)).

4.3 Glue Tabs Selection (S3)
In our approach, we only select certain Cut-Edges to
assign glue tabs. This is because assigning glue tabs on
every Cut-Edge will limit the number of feasible solu-
tions in the search space and increase the effort needed
when reconstructing the 3D model. Therefore, we as-
sign only a minimum number of glue tabs that will re-
sult in a stable constructed 3D model. For each vertex,
we allow at most one edge associated with this vertex
without a glue tab, so that the created papercraft will not
contain an open hole after being built. This is achieved
by visiting all pre-computed glue tabs and selecting a
minimum set of them based on the lemma below.

This implies that each vertex v ∈VM of a mesh can only
be incident to one edge e ∈ EM that is a Cut-Edge, and
will not be fixed with a glue tab. This stability is rea-
sonable because adding more glue tabs will not yield a
more stable reconstructed model, while increasing the
reconstruction effort as shown in our user study.

Minimum Number of Glue Tabs

The aforementioned concept can be summarised as:

Definition 4.1. Given a mesh M = (VM,EM) and the
corresponding dual graph D = (VD,ED), the graph C =

(VC,EC), where VC = VD and EC = ED/ET , contains
only Cut-Edges that are not assigned a glue tab. If
∀v ∈VC ∣ degree(v) ≤ 1 holds true, the reconstruction of
the 3D model is stable. The function degree(v) returns
the vertex degree of a vertex v.

4

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

50

Vol.28, No.1-2, 2020

kiv
Rectangle



Figure 4 gives an example to demonstrate this property.
The input mesh M (black) and the corresponding dual
graph D (blue) are shown in Figure 4(a). Different MST
T (green trees in Figure 4(b) and (c)) can be synthe-
sised from D. The graph C in Definition 4.1 can be
determined as follows. Assume that the graph C is the
union of n connected components Ci = (VCi ,ECi), where
i = 1, ..,n and 1 ≤ n < ∣EC∣. For each connected compo-
nent Ci we assign glue tabs, under the condition that
∀v ∈VC ∣ degree(v) ≤ 1 holds.

(a)

C1

C2

(b)

C1

(c)

Figure 4: (a) An unfolded mesh M (black) and its dual
graph D (blue). (b) A MST (green) of (a) and its EC re-
sulting in two path components C1 and C2 (brown). (c)
Another MST T (green) of (a) that defines the unfold-
ing and its corresponding EC as a cycle component C1
(brown).

vp
vq

(a) Closed mesh

vp
vq

(b) One hole

vp

vq

(c) Two holes

Figure 5: An example of multiple cycles.

We first investigate the properties of Ci. Suppose we
have a closed manifold mesh. Then there are two types
of Ci that can be taken into consideration. One type
is a path (brown graph in Figure 4(b)), and the other
one is a cycle (brown paths in Figure 4(c)). This is
because the dual vertex of a face in a triangular mesh
connects to three dual edges. At least one dual edge be-
longs to the MST, and thus each vertex in Ci can have
a maximum degree of two. We further summarise the
combinations of cycles and paths into three cases. Case
1 contains only one cycle, Case 2 contains only paths,
and Case 3 contains cycles and paths. Figure 5 shows
the reason why the cycles-only case does not exist. A
cycle Ci happens only when we cut a mesh into multi-
ple patches, or open a vertex. If we open vertices on a
closed manifold mesh, the Euler Formula does not hold:
(VCi −n)+∑n

p=1 degree(vp)−(ECi +∑
n
p=1 degree(vp))+

FCi ≠ 1. This leads to the condition that our unfolded
patch is not a single connected planar graph, which vi-
olates our assumption.

Since Ci can be only a cycle or a path, the glue tab as-
signment can be done independently. In practice, the

problem is equal to retrieving a minimum edge cover of
a cycle or a path, which can be calculated in O(∣ECi ∣)

time.
Based on this fact, we can devise an algorithm that finds
the minimum number of glue tabs for Ci. In Case 1, Ci
is a path, as shown in Figure 4(b). We pick a vertex
v ∈ VD with degree(v) = 1 as the start vertex, then we
iterate over the path and attach a glue tab on every sec-
ond edge. More specifically, the number of glue tabs

necessary of a path is exactly f (Ci) = ⌊
∣ECi ∣

2 ⌋. In Case
2, if Ci is a cycle, as shown in Figure 4(c), we can pick
an arbitrary starting edge for the path and the number
of glue tabs can be computed as f (Ci)+1.

Lemma 4.1. The minimum number of glue tabs for a
mesh M can be computed in O(n) time. The total glue
tab number is∑n

i=1 f (Ci), where n is the number of con-
nected components defined in Definition 4.1.

Proof. Note that f (Ci) returns the minimum number
of glue tabs, can be proven by induction. Let P(n) be

the statement that f (Ci) = ⌊
∣ECi ∣

2 ⌋ determines the min-
imum number of glue tabs necessary for a path. The
base case is P(1). For ∣ECi ∣ = 0, ⌊ 0

2 ⌋ = 0 is true. Let us
consider the step from n to n+1 and assume that P(n) is
true. Suppose n+1 is odd, this means that n is even and
P(n+1) = P(n)+1, in case n is odd, P(n+1) = P(n).

This leads to the fact that P(n+1) = ⌊
∣ECi ∣

2 ⌋ holds true.
The case of a cycle can be proven similarly. Based on
this fact, we now show that ∑i=1 f (Ci) is minimal by
contradiction. We assume that ∑i=1 f (Ci) is not min-
imal, which implies that ∃ f (Ci) having a larger value
than its minimum. This constitutes a contradiction to
our previous statement. ∎

4.4 Mesh unfolding using the MST (S4)
Figure 6 shows how an unfolding of the mesh is com-
puted. Each face is defined by three points A, B, and C
in 3D and a, b and c in the 2D representation. For the
first face, as shown in blue in Figure 6, we set the vertex
a to (0,0), b to (0,AB). Then we calculate the position
of c using the following Equation 1.

s = ∥(B−A)×(C−A)∥/(AB)
2

d = (B−A) ⋅ (C−A)/(AB)
2

cx = ax+d(bx−ax)− s(by−ay)

cy = ay+d(by−ay)+ s(bx−ax)

(1)

For every following triangle we already have the po-
sitions of two vertices and only need to calculate the
position for the last vertex c, which has two possible
positions c1 and c2 as shown in Figure 6(b). We select
the position that is on the opposite side of the shared
edge. If a glue tab is attached to a face it is unfolded
analogue to mesh triangles.

5

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

51

Vol.28, No.1-2, 2020

kiv
Rectangle



x

y

z
A

B / A

C / B

C

(a)

x

y

a b / a

c / b c1c2

(b)

Figure 6: (a) A 3D model of a box, and (b) the unfold-
ing of the first two faces.

4.4.1 Overlap Detection
After an unfolding is found, we detect overlaps to deter-
mine if the unfolding is correct. An overlap is defined
if two faces are intersected partly with each other, or if
a face is entirely located inside another face. For glue
tabs, the definition is similar. In total, three different
cases of overlaps can occur, including either face-face,
glue tab-glue tab, or face-glue tab overlaps.

If an overlap occurs, the Sutherland-Hodgman
Clipping algorithm [17] is used to calculate the
overlapped area. This algorithm finds the vertices
of the intersection polygon created by the two
faces. The overlap can be described as a polygon
p. The area is calculated with the shoelace formula
Area = 1

2 ∣∑
k−1
i=1 xiyi+1+xky1−∑

k−1
i=1 xi+1yi−x1yk∣ [15],

where xi and yi are the coordinates of the i-th point in
p. This area is then used as the energy(P) function to
describe the quality of the unfolding.

Face-face overlaps are checked before glue tab related
overlaps are checked to improve the performance. This
is because if faces overlap with each other, an overlap-
free unfolding cannot be found even if the glue tabs are
overlap-free. Moreover, the performance can be im-
proved by limiting the number of faces that need to be
checked. The overlap detection does not need to be
done if faces share Bend-Edges, as no overlap is pos-
sible due to how we handle the unfolding.

4.4.2 Spatial Optimisation
After the simulated annealing process comes to an end,
we try to find an unfolding that enables better spatial
efficiency, see Figure 7. The energy-function is thereby
redefined as energy(P) = spread(x-axis) + spread(y-
axis), where spread(x-axis) measures the distance of
the vertex with the highest value on the x-axis minus
the vertex with the lowest value on the x-axis. We use
simulated annealing again, whereas the algorithm now
discards all unfoldings with overlaps.

4.5 Post-Processing (S5)
Multiple strategies are introduced to improve the vi-
sual quality, namely the clean look of the reconstructed

model and guide users with reconstruction using visual
indicators.

Colour Coding and Edge Numbering. According
to the stitching algorithm proposed by Takahashi et
al. [19], boundary edges that will be glued together, are
assigned the same colour. We follow their strategy to
generate our visual indicators.

Bend-Edge Coding. Each Bend-Edge is coded to dis-
tinguish between a mountain-fold or a valley-fold, as
proposed by Takahashi et al. [19]. A mountain-fold is
represented by a solid line and a valley-fold is displayed
by a dotted line (see Figure 3(c)).

5 IMPLEMENTATION DETAILS

The system is implemented using an Intel Core i7 CPU
(4x3.3 GHz, 4MB L3 Cache) and 8 GB RAM. The
source code is written in C++17 using OpenGL ver. 4.5
to visualise the results and CGAL ver. 4.13 to manage
the graph data structure. QT 5.13 is employed to pro-
vide a graphical user interface, and CMake ver. 3.14 is
used to build the process. GCC 9.2 is used to compile
the sources on Ubuntu 18.04.02 LTS.

We limit in the simulated annealing process the maxi-
mum number of iterations to t = 100,000 and set kB =

0.002 based on our empirical experience.

Then we employ the simulated annealing process. Ad-
ditionally, a face-face overlap is weighed ten times
higher than a glue tab-glue tab and a glue tab-face over-
lap. This prioritisation should force the algorithm to
solve the mesh unfolding first, as glue tab related over-
laps could be resolved using post-processing.

At the end of every iteration, if P is set to P′, we visu-
alise the unfolding. The annealing process terminates
if energy(P′) = 0. If until t = 0 we do not find a cor-
rect unfolding we terminate unsuccessfully. The spatial
optimisation is limited to 5,000 iterations.

6 RESULTS AND EVALUATION

In this section, we show several experimental results
and discuss the findings in our evaluation.

6.1 Experimental Results

Figures 3, 7 and 8 show the results generated using our
system. In Figure 7, we compare the unfolding results
that are considered without and with spatial optimisa-
tion. In Figure 7(b), the triangles are smaller than the
ones in (c). Figure 8 show other interesting models,
where the glue tabs are highlighted in the 3D meshes.
The testing data specification is summarised in Table 1.

6

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

52

Vol.28, No.1-2, 2020

kiv
Rectangle



(a) (b)

(c)
Figure 7: (a) Armadillo mesh. (b) Unfolding. (c) Spatially optimised unfolding.

6.2 Quantitative Evaluation

Figure 8(a)-(c) shows different models and their unfold-
ings. Sufficient results can be achieved within 100,000
iterations limit to find an unfolding. With a limit of
5,000 iterations for spatial optimisation compact results
can be achieved. More iterations did not yield consis-
tently more compact results.

Glue tabs certainly impact the amount of time necessary
to find an unfolding, but they are not the only influence.
The structure of the model also impacts the time nec-
essary to find an unfolding. While some models have
a similar number of faces, the time to unfold can differ
substantially. This can be attributed to the geometric
properties of the models, as spherical models seem to
unfold consistently faster than others. Further, the time
discrepancy can be attributed to the random-walk of the
simulated annealing process, where the time to unfold
can greatly differ for the same model.

To evaluate the algorithm, we conduct an experiment
by unfolding a variety of 3D models. The results are
summarised in Table 1 using glue tabs as described in
Section 4.1. In the experiment, a maximum of 100,000
iterations is used to limit the computational time, as an
experimental value.

Table 1: Table showing the average unfolding perfor-
mance for different models. VM is the number of ver-
tices, EM the number of edges and FM the number of
faces.

Time (seconds)
Model VM EM FM Ours Brute-force
Icosa 12 30 20 0 0
Star 14 36 24 8 19
Star-Sqrt3 38 108 72 31 >6000
Tiger (Fig. 3) 58 168 112 65 -
Star-PNsplit (Fig. 8(a)) 110 324 216 625 -
Horse (Fig. 8(b)) 153 453 302 946 -
Hand (Fig. 8(c)) 170 504 336 1377 -
Bunny-348 176 522 348 976 -
Armadillo (Fig. 7) 195 579 386 730 -
Moneybox-392 196 586 392 2200 -

The performance of the presented approach is not only
influenced by the number of faces, but also by the size
of the glue tabs. The bigger the glue tabs are, the more
iterations are needed to find a feasible unfolding. In the
worst case, an unfolding might no longer be possible.
Table 1 shows that not only the number of faces influ-
ences the computational time for finding a solution, but
also shows that the randomness of simulated annealing
plays an important role. A comparison with a brute-
force approach is conducted to investigate the feasibil-
ity of the solution space. The brute-force approach cal-

7

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

53

Vol.28, No.1-2, 2020

kiv
Rectangle



(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)
Figure 8: (a.1) Star mesh with 216 faces. (a.2) Unfolding of the star mesh. (b.1) Horse mesh with 302 faces. (b.2)
Unfolding of the horse mesh. (c.1) Hand mesh with 336 faces. (c.2) Unfolding of the hand mesh.

8

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

54

Vol.28, No.1-2, 2020

kiv
Rectangle



culates all possible minimum spanning trees, as well as
all possible glue tab positions until a solution is found.
Only small models can be solved using the brute-force
approach. As the number of faces increases using the
brute-force approach becomes infeasible.

6.3 Qualitative Evaluation
To evaluate the impact of glue tabs on the reconstruc-
tion process as well as the visual quality of the recon-
structed models, we conducted a user study with five
participants (P1)-(P5) between the age 22 and 32 with
different educational backgrounds. Three of them have
a computer science background, and one has a finance
background. The participants were asked to construct
the tiger model (Figure 9) twice. Once is with glue tabs
(Figure 3(f)), and the other time without. Apart from
the glue tabs, both unfoldings have the same visual in-
dicators, as explained in Section 4.5. Models with glue
tabs were prepared with double-sided tape, where par-
ticipants still needed to remove the protective covering.
For models without glue tabs, we prepared glue strips.
At the beginning of the study, participants were first in-
structed on how to construct the papercraft. We pre-
pared an unfolded octagon with glue tabs and visual in-
dicators, which the participants used to practice how to
follow the visual indicators. To avoid a learning effect,
P2-P4 started with the model with glue tabs (O1), and
P1 and P5 began with the model without glue tabs (O2).

Table 2: Time (in minutes:seconds) for participants to
reconstruct models. M/F marks the gender of the par-
ticipant. Bold values are the time achieved in the first
round. † indicates which model participants found eas-
ier to reconstruct, while ‡ marks the preferred visual
model.

P1 (M) P2 (M) P3 (F) P4 (M) P5 (M)
w. glue tabs 26:15 23:10‡ 14:08†‡ 19:08‡ 22:15†‡
wo. glue tabs 44:40†‡ 18:47† 19:09 15:04† failed

Table 2 shows the time spent for each model. Most par-
ticipants required less time for the second model recon-
struction, while P3 spent more time for the second one.
Her second model does not have glue tabs, which im-
plies that the model with glue tabs is sufficiently easier
for her. P5 failed to construct the model without glue
tabs after trying for an hour. We further analyse and
compare the time reduction of the two model orders,
which suggests that glue tabs improve the amount of
time necessary for reconstruction. The time needed for
reconstruction for P1 decreased by 18:25 and for P4 by
4:04, who started without and continued with glue tabs
respectively, while it increased for P3 by 5:01 and for
P2 by 4:23, who both started with glue tabs.

We also asked participants, which model was easier
to create. Opinions of participants differed. P1, P2,
and P4 said that the model without glue tabs was eas-
ier, although P1 spent almost half time for the glue tab

model. P2 remarked that without pre-cut glue stripes
they would find the reconstruction with glue tabs easier.
P3 emphasised that the glue tab model is significantly
easier, as fewer edges need to be glued and edges are
easier to connect. However, the last glue tab is prob-
lematic, since it cannot be fixed from inside.

We also asked participants to evaluate which con-
structed model has a better visual appearance. P2, P3,
P4 and P5 perceived that the model with glue tabs is
cleaner, while P1 prefers the model without glue tabs.
P1 stated that it is easier to use stripes in the process.

Figure 9 shows the results from P3. We highlight two
parts of the tiger. With glue tabs, sometimes the edges
do not stick together well, as shown at the upper part of
the picture, while edges fixed with glue strips are less
problematic. On the contrary, in the lower part, the glue
tabs stick together well.

Figure 9: Tiger with glue tabs (left) and without (right)
reconstructed by P3.

6.4 Limitations and Discussion
Multiple factors could limit the presented approach.
The approach tends to solve the problem in global
way, while disregarding local overlaps. Thus, small
local overlaps are harder to solve as their changes to
energy(P) is rather insignificant. Another limitation is
that the current approach is not globally optimal, since
we initially limit the glue tab placement to a certain de-
gree. One limitation inherited from the glue tab design
is that one can hardly connect the last two faces, since
users cannot access the inside of the model anymore to
apply counter-pressure.

7 CONCLUSION AND FUTURE
WORK

In this paper, we present a new approach to unfold 3D
meshes, by adding a minimal number of glue tabs to aid
users with the reconstruction. We also demonstrate the
applicability of the approach.

To improve the performance and lower the impact of
glue tabs on the performance, a glue tab can be adjusted

9

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

55

Vol.28, No.1-2, 2020

kiv
Rectangle



if an overlapping area is rather small. This would in-
crease the solution space for the problem.
In the future, we plan to incorporate mesh structure
analysis to guarantee that semantic structures, such as
the ears of a bunny, are kept together in the unfolded
patch. This could improve the reconstruction process.

ACKNOWLEDGEMENTS
This paper was partly written incollaboration with
the VRVis Competence Center. VRVis is funded by
BMVIT, BMWFW, Styria, SFG and Vienna Business
Agency in thescope of COMET - Competence Cen-
ters for Excellent Technologies (854174), which is
managed by FFG.

REFERENCES
[1] Byoungkwon An, Ye Tao, Jianzhe Gu, Tingyu

Cheng, Xiang ’Anthony’ Chen, Xiaoxiao Zhang,
Wei Zhao, Youngwook Do, Shigeo Takahashi,
Hsiang-Yun Wu, et al. Thermorph: Democratiz-
ing 4d printing of self-folding materials and inter-
faces. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, pages
1–12, 2018.

[2] Yi-Jun Chang and Hsu-Chun Yen. Improved algo-
rithms for grid-unfolding orthogonal polyhedra.
International Journal of Computational Geometry
& Applications, 27(01n02):33–56, 2017.

[3] David Cheriton and Robert Endre Tarjan. Finding
minimum spanning trees. SIAM Journal on Com-
puting, 5(4):724, 1976.

[4] Anton Dekkers and Emile Aarts. Global optimiza-
tion and simulated annealing. Mathematical Pro-
gramming, 50(1-3):367–393, 1991.

[5] Ronald A. DeVore and Vladimir N. Temlyakov.
Some remarks on greedy algorithms. Advances in
computational Mathematics, 5(1):173–187, 1996.

[6] Samuel M. Felton, Michael T. Tolley, ByungHyun
Shin, Cagdas D. Onal, Erik D. Demaine, Daniela
Rus, and Robert J Wood. Self-folding with shape
memory composites. Soft Matter, 9(32):7688–
7694, 2013.

[7] Jonathan L. Gross and Jay Yellen. Handbook of
graph theory. CRC Press, 2004.

[8] Thomas Haenselmann and Wolfgang Effelsberg.
Optimal strategies for creating paper models from
3D objects. Multimedia Systems, 18(6):519–532,
2012.

[9] Scott Kirkpatrick, Daniel Gelatt, and Mario Vec-
chi. Optimization by simulated annealing. Sci-
ence, 220(4598), 1983.

[10] Joseph B. Kruskal. On the shortest spanning sub-
tree of a graph and the traveling salesman prob-
lem. Proceedings of the American Mathematical
Society, 7(1):48–50, 1956.

[11] Kwang Y. Lee and Mohamed A. El-Sharkawi.
Modern heuristic optimization techniques: theory
and applications to power systems, volume 39.
2008.

[12] Jun Mitani and Hiromasa Suzuki. Making paper-
craft toys from meshes using strip-based approxi-
mate unfolding. In ACM Transactions on Graph-
ics (TOG), volume 23, pages 259–263, 2004.

[13] Jean Pannetier, J. Bassas-Alsina, Juan Rodriguez-
Carvajal, and Vincent Caignaert. Prediction of
crystal structures from crystal chemistry rules
by simulated annealing. Nature, 346(6282):343,
1990.

[14] Geoffrey C. Shephard. Convex polytopes with
convex nets. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 78,
pages 389–403, 1975.

[15] Martin Šlapák, Josef Vojtěch, and Radek Velc.
Automated numerical calculation of sagnac cor-
rection for photonic paths. Optics Communica-
tions, 389:230–233, 2017.

[16] Raphael Straub and Hartmut Prautzsch. Creating
optimized cut-out sheets for paper models from
meshes. Karlsruhe Reports in Informatics 2011,
36, 2011.

[17] Ivan Edward Sutherland and Gary Wesley Hodg-
man. Reentrant polygon clipping. Communica-
tions of the ACM, 17(1):32–42, 1974.

[18] Jon M. Sutter, Steve L. Dixon, and Peter C. Jurs.
Automated descriptor selection for quantitative
structure-activity relationships using generalized
simulated annealing. Journal of Chemical In-
formation and Computer Sciences, 35(1):77–84,
1995.

[19] Shigeo Takahashi, Hsiang-Yun Wu, Seow Hui
Saw, Chun-Cheng Lin, and Hsu-Chun Yen. Op-
timized topological surgery for unfolding 3D
meshes. Computer Graphics Forum, 30:2077–
2086, 2011.

[20] Zhonghua Xi, Yun-Hyeong Kim, Young J. Kim,
and Jyh-Ming Lien. Learning to segment and un-
fold polyhedral mesh from failures. Computers &
Graphics, 58:139–149, 2016.

10

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

56

Vol.28, No.1-2, 2020

kiv
Rectangle


	2020-Journal-temp-5 47
	2020-Journal-temp-5 48
	2020-Journal-temp-5 49
	2020-Journal-temp-5 50
	2020-Journal-temp-5 51
	2020-Journal-temp-5 52
	2020-Journal-temp-5 53
	2020-Journal-temp-5 54
	2020-Journal-temp-5 55
	2020-Journal-temp-5 56



