
Doctoral Thesis

Accurate and fast hydrodynamic
modeling of fluvial and pluvial floods

at large scales

submitted in satisfaction of the requirements for the degree of
Doctor of Science

of the TU Wien, Faculty of Civil Engineering
as part of the Vienna Doctoral Programme on Water Resource Systems

by

Dipl.-Ing. Andreas Buttinger-Kreuzhuber
Matrikelnummer 0826671

Examiner: Univ.Prof. Dipl.-Ing. Dr.techn. Günter Blöschl
Institut für Wasserbau und Ingenieurhydrologie
TU Wien
Karlsplatz 13/222, 1040 Vienna, Austria

Examiner: Univ.Prof. Dipl.-Ing. Dr.techn. Christian Bucher
Institut für Hochbau, Baudynamik und Gebäudetechnik
TU Wien
Karlsplatz 13/208, 1040 Vienna, Austria

Examiner: Prof. Dr.-Ing. Reinhard Hinkelmann
Institut Bauingenieurwesen
Fachgebiet Wasserwirtschaft und Hydrosystemmodellierung
TU Berlin
Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Co-Supervisor: Dipl-Ing. Dr.techn. Jürgen Waser
VRVis Zentrum für Virtual Reality und Visualisierung
Donau-City-Straße 11, 1220 Vienna, Austria

Vienna, August 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Dissertation

Genaue und schnelle hydrodynamische
Modellierung von Flusshochwässern

und Starkregenereignissen

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

eingereicht an der Technischen Universität Wien, Fakultät für Bauingenieurwesen
als Teil des Doktoratskollegs für Water Resource Systems

von

Dipl.-Ing. Andreas Buttinger-Kreuzhuber
Matrikelnummer 0826671

Gutachter: Univ.Prof. Dipl.-Ing. Dr.techn. Günter Blöschl
Institut für Wasserbau und Ingenieurhydrologie
TU Wien
Karlsplatz 13/222, 1040 Wien

Gutachter: Univ.Prof. Dipl.-Ing. Dr.techn. Christian Bucher
Institut für Hochbau, Baudynamik und Gebäudetechnik
TU Wien
Karlsplatz 13/208, 1040 Wien

Gutachter: Prof. Dr.-Ing. Reinhard Hinkelmann
Institut Bauingenieurwesen
Fachgebiet Wasserwirtschaft und Hydrosystemmodellierung
TU Berlin
Gustav-Meyer-Allee 25, 13355 Berlin

Co-Betreuer: Dipl-Ing. Dr.techn. Jürgen Waser
VRVis Zentrum für Virtual Reality und Visualisierung
Donau-City-Straße 11, 1220 Wien

Wien, August 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Abstract

Floods are the most costly natural disaster worldwide, causing significant socio-
economic losses. There is a growing concern that floods are increasing in frequency
and magnitude due to climate change. In order to mitigate the disastrous conse-
quences, flood management agencies, regional planners, and insurance companies
rely on an accurate modeling of inundated areas. The reliability of large-scale flood
hazard maps, which show the probability of flooding at a specific location within a
certain time period, is of key importance. Previous large-scale studies show limita-
tions in terms of accuracy and local relevance in the delineated inundation maps.
The aim of this thesis is to develop accurate and efficient methods for fluvial and
pluvial flood hazard assessment at large scales.
In a first step, the focus is on the numerical scheme for solving the instation-

ary two-dimensional shallow water equations (SWEs). In the SWEs, the bed source
term accounts for the gravitational acceleration due to a sloped bed. In finite vol-
ume methods, the treatment of discontinuities in the bed source term across cell
interfaces is challenging. To address this issue, a second-order accurate scheme is
developed based on a recently introduced first-order accurate scheme. The novel
scheme involves a specialized reconstruction of water levels and bed levels enabling
an accurate resolution of shallow flows over abruptly changing bed topography. The
scheme’s accuracy is verified with analytical solutions in several Riemann problems
and the parabolic basin test case, and it is shown to outperform previous schemes.
The scheme is also validated on historic flood events in Malpasset, France, and
Lobau, Austria, showing good agreement between simulated and observed water
level records.
Second, the presented second-order scheme is applied in an inundation modeling

framework for Austria at a resolution of 2 m. Given an arbitrary tiling of the region
of interest, the framework automatically sets up boundary conditions and executes
the hydraulic simulation. For an efficient simulation, discharges are adjusted along
the 33,880 km long stream network to maintain the prescribed flood probabilities. In
combination with a parallelized implementation running on 10 graphics processing
units (GPUs), the delineation of an inundated area of 3500 km2 for a 100-year flood
takes less than a month. The approach shows good agreement between simulated
and measured data at stream gauges, as well as between simulated inundated areas
and local flood hazard maps, achieving a critical success index (CSI) score of 0.7.
Third, an integrated modeling framework is proposed that accounts for processes

relevant for flash floods. Interception and infiltration is modeled in a time-dependent,
spatially distributed way. For urban scenarios, the surface flow is coupled with the
sewer network in an interleaved way, which allows parallel time-stepping. Except for
the sewer network simulation, all models are implemented on a GPU, resulting in
runtimes up to 1000 times faster than a sequential execution on a central processing
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Abstract

unit (CPU) core. For rainfall–runoff modeling, the first-order accurate scheme at a
higher resolution is more efficient than the novel second-order accurate scheme at
a lower resolution. The coupled model is able to accurately simulate areas of up to
200 km2 with a resolution of 1 m.
Overall, this thesis contributes to current research on large-scale flood hazard

mapping through innovative methods with enhanced accuracy and computational
efficiency.
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Kurzfassung

Hochwässer verursachen erhebliche sozioökonomische Kosten und sind die teuer-
ste Naturkatastrophe weltweit. Infolge des Klimawandels steigt die Besorgnis, dass
diese Extremereignisse an Häufigkeit und Intensität zunehmen. Um deren negative
Konsequenzen zu vermindern, ist für Hochwasserschutzdienste, Raumplanungsbe-
hörden und Versicherungen die genaue und flächendeckende Kenntnis möglicher
Überflutungsflächen wichtig. Überflutungsflächen geben die mit einer bestimmten
Wahrscheinlichkeit in einem gewissen Zeitraum überschwemmten Teile der Land-
schaft an. Großskalige Berechnungen von Überflutungsflächen wiesen bisher hin-
sichtlich ihrer Rechengenauigkeit und der Berücksichtigung lokaler Effekte Ein-
schränkungen auf. Das Ziel dieser Arbeit ist es, genaue und effiziente Methoden zur
flächendeckenden Ausweisung der Überflutungsgefahr von Flusshochwässern und
Starkregenereignissen zu entwickeln.
Im ersten Teil der Arbeit liegt der Fokus auf der Entwicklung eines numerischen

Schemas für die Lösung der zeitabhängigen zweidimensionalen Flachwassergleichun-
gen. Bei der Methode der finiten Volumen ist die Behandlung von Unstetigkeiten
im Quellterm der Flachwassergleichungen an den Zellrändern herausfordernd. Dieser
Quellterm berücksichtigt die Beschleunigung des Fluids auf einer geneigten Fläche
aufgrund der Erdanziehungskraft. Um eine steile und sich abrupt verändernde To-
pographie numerisch zuverlässig zu behandeln, wird eine spezielle Rekonstruktion
der Wasserstände und der Bodentopographie eingeführt und in ein neu entwickeltes
Rechenschema zweiter Ordnung integriert. Die Genauigkeit des Schemas wird an
Riemannproblemen und dem Testproblem “parabolisches Becken” verifiziert. Für
historische Ereignisse in Malpasset, Frankreich, und in der Lobau, Österreich, gibt
es eine gute Übereinstimmung zwischen simulierten und gemessenen Wasserständen.
Das neue Rechenschema weist eine größere Genauigkeit bei kürzeren oder ähnlichen
Rechenzeiten als vorangegangene Schemata auf.
Im zweiten Teil der Arbeit wird das entwickelte Rechenschema in einem Frame-

work zur Berechnung von Überflutungsflächen mit einer Auflösung von 2 m für
ganz Österreich angewandt. Das Framework berechnet sowohl Randbedingungen
als auch Überflutungsflächen vollautomatisch unter der Voraussetzung, dass das
Gebiet bereits in Rechenkacheln unterteilt wurde. Die Durchflüsse werden entlang
des 33 880 km langen Flussnetzes angepasst, um die vorgegebene Jährlichkeit des
Ereignisses (z.B. 100 Jahre) zu erhalten. Die Einführung dieser effizienten Methode
und eine hochgradig parallelisierte Implementierung auf 10 Grafikkarten (GPUs)
resultiert in einer Rechenzeit von weniger als einem Monat für 3 500 km2 an Über-
flutungsflächen in Österreich für ein 100-jährliches Hochwasser. Das Modell weist
eine gute Übereinstimmung zwischen gemessenen und simulierten Wasserstands–
Durchfluss–Beziehungen an Flusspegeln sowie zwischen lokalen Gefahrenzonen (GFZ)
und simulierten Überflutungsflächen (Critical Success Index von 0.7) auf.
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Kurzfassung

Im dritten Teil der Arbeit wird das entwickelte Schema mit numerischen Mod-
ellen zur Beschreibung der hydrologischen Prozesse bei Starkregen gekoppelt. Zum
Beispiel werden Versickerung und Wasserrückhalt durch die Vegetation mit räum-
lich verteilten, zeitabhängigen Modellen beschrieben. Für urbane Gebiete wird die
Simulation des Oberflächenabflusses mit einer Kanalnetzsimulation gekoppelt. Die
Simulationen laufen innerhalb eines Kopplungsschrittes parallel, wodurch schnellere
Rechenzeiten erzielt werden. Mit Ausnahme der Kanalnetzsimulation werden die
Rechenmodelle auf GPUs implementiert, sodass eine über tausendfache Beschle-
unigung im Vergleich zu einem einzigen CPU Kern erreicht wird. Für die Simu-
lation von Starkregen ist die Verwendung des Rechenschemas erster Ordnung bei
höherer Auflösung gegenüber dem Schema zweiter Ordnung bei niedriger Auflösung
zu bevorzugen. Das gekoppelte Modell ermöglicht die genaue Simulation der Über-
flutungsflächen von bis zu 200 km2 großen urbanen Gebieten mit einer Auflösung
von 1 m.
Diese Arbeit trägt durch innovative Ansätze, welche eine verbesserte Genauigkeit

und eine gesteigerte rechnerische Effizienz bieten, zur Forschung in der großskaligen
hydrodynamischen Modellierung von Hochwassergefahren bei.
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1 Introduction

Both frequency and intensity of floods have recently increased in parts of Europe
(Alfieri et al., 2015; Blöschl et al., 2015; Blöschl et al., 2019). For example, Austria
was hit by major floods in 2005, 2013 (Blöschl et al., 2013), and, more recently, in
2019. This accumulation of floods in the last decades stimulates discussions about
trends in floods linked to climate change (Alfieri et al., 2017). Moreover, intensify-
ing sub-daily heavy rain events due to rising temperatures (Chen et al., 2018) are
expected to increase the occurrence of flash floods. Just a few weeks ago, on July
13 up to 150 mm of rain fell in 24 hours in western Germany and parts of Belgium,
causing one of the deadliest recent flash floods in Europe (Cornwall, 2021). Flash
floods are characterized by very short durations. In Bavaria, Germany, catchments
smaller than 100 km2 show a median rising time of 8 hours, but also rising times as
short as an hour occur (Kaiser et al., 2020). The rapidity of these events results in
a higher mortality compared to fluvial floods (Jonkman, 2005).
Risk-orientated flood management approaches are considered essential in order to

minimize human life loss and economic damage and are required by the European
Union Flood Directive (European Commission, 2007). According to the Directive,
flood risk is defined as the combination of flood hazard, i. e. the probability of
flooding at a certain location within a certain time span, and of the associated
adverse consequences. A critical step in the derivation of flood hazard maps is the
simulation of water flow, and in particular of the maxima of flow velocities and
water depths at each location in a region. The accuracy of simulated flood hazard
maps is of paramount importance, thus the simulation needs to be accurate yet fast
enough to be completed within a reasonable timespan.
The motion of fluids is described by the Navier–Stokes equations, which express

conservation of mass and conservation of momentum for Newtonian fluids (Temam,
1984). A particular case is inviscid flow, which is governed by the Euler equations.
Under the assumption of incompressible flow, hydrostatic pressure approximation,
and constant density of the fluid, the shallow water equations (SWEs) can be derived
from the Navier–Stokes equations by depth-averaging (Whitham, 1999b; Gerbeau
and Perthame, 2001). The SWEs provide a widely used description of water flow
assuming that the flow is shallow, i. e. the vertical depth is small compared to the
horizontal length scale. Mass and momentum are conserved in the homogeneous
SWEs, i. e. in the SWEs without source terms. Therefore, the homogeneous SWEs
are a so-called system of conservation laws. Often, viscous and turbulent terms
are neglected, yielding a set of hyperbolic partial differential equations (PDEs). A
distinctive feature of hyperbolic PDEs is a bounded domain of dependence as the
characteristic waves travel at a finite speed, given by the eigenvalues. However, in
the quasilinear SWEs, an initially smooth state may transition into a discontinuous
solution, a process called shock formation. This discontinuity in the solution is
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1 Introduction

challenging from an analytical and numerical perspective, as numerical solvers based
on a smooth representation of the solution require a high resolution for resolving
the shock.
In the case of mesh- or grid-based, so-called Eulerian, discretizations, finite el-

ement methods (FEMs) and finite volume methods (FVMs) are typically used to
solve the SWEs or its one-dimensional variant, the Saint-Venant equations. The
FEM reframes the problem in a variational setting. The solution is sought in a
finite-dimensional space, usually piecewise polynomial functions. In order to rep-
resent discontinuous solutions, a FEM variant, the discontinuous Galerkin FEM,
is typically used, where restrictions on the smoothness of the global solution are
relaxed (Klöckner et al., 2009; Kesserwani and Liang, 2012). The FVM is a popu-
lar method as it directly ensures the conservation of mass and momentum. In the
FVM, the solution is approximated by average values over cells or so-called finite
volumes. Between the cells, numerical fluxes are exchanged at the interfaces and
can be computed with approximate Riemann solvers.
The accuracy of finite volume schemes hinges both on the order of accuracy for

the smooth regions of the solution as well as on a correct resolution of the bed source
term at discontinuities (Audusse and Bristeau, 2005; Noelle et al., 2006). The bed
source term accounts for gravitational acceleration due to a sloped bottom topogra-
phy. In particular, numerical issues arise in the vicinity of wet–dry boundaries and
for steep or abruptly changing bottom topography (Audusse et al., 2004; Chinnayya
et al., 2004; Bollermann et al., 2013; Hou et al., 2013b; Hou et al., 2013a; Morales
de Luna et al., 2013; Horváth et al., 2015; Chen and Noelle, 2017). Additionally, the
numerical scheme is required to preserve at least specific steady states, such as a lake
at rest, a property termed well-balancedness (Bouchut, 2004; Castro et al., 2007;
Murillo and García-Navarro, 2012; Duran et al., 2013). Still, even popular meth-
ods with a low computational footprint, e. g. the hydrostatic reconstruction (HR)
method (Audusse et al., 2004; Audusse and Bristeau, 2005), suffer from limitations
in steep terrain (Delestre et al., 2012). Thus, there is a need for computationally
efficient methods that combine higher order accuracy with an appropriate treatment
of bed discontinuities for shallow flows in complex terrain.
The accuracy of the hydrodynamic simulation also relies on the grid resolution

so that the digital terrain model (DTM) is able to resolve terrain features and
buildings. Small, localized modifications of the terrain, e. g. retention basins and
levees, may protect otherwise flooded areas and vice versa, since inundation is a
complex and nonlinear process. However, regional to continental flood inundation
models traditionally operate on resolutions of 30 to 100 m, which are too coarse
to resolve for example levees. In this case, post-processing steps are required, e. g.
down-sampling procedures (Falter et al., 2016; Bates et al., 2021). Unfortunately,
high resolutions come with slow simulation runtimes due to the Courant–Friedrichs–
Lewy (CFL) condition (Courant et al., 1967), which links the time step with the
spatial resolution via the numerical wave speeds in explicit time integration methods.
The effective runtime increases by a factor of 5 to 7 times if the grid cell size is halved
(Horváth et al., 2020). As river floods often last over a week, the model runtime limits

2



the usage of high resolutions in fluvial flood hazard mapping. In order to improve
accuracy, efficient methods for large-scale flood hazard mapping are needed, which
will pave the way for high-resolution simulations that still remain computationally
feasible.
To speed up simulations, simplifying assumptions, such as neglecting the advec-

tion term in the SWEs, are common in continental models (Alfieri et al., 2014; Wing
et al., 2017; Bates et al., 2021). In contrast to the full or dynamic SWEs, simplified
SWEs may lead to unsatisfactory results at wet–dry boundaries (Cozzolino et al.,
2019) and in urban regions (Costabile et al., 2017; Costabile et al., 2020). For urban
regions, the inclusion of microtopography and buildings as anisotropic porosity in
the SWEs is an interesting option to enable fast runtimes (Özgen et al., 2016). A
viable, generic alternative is to accelerate model runtimes with graphics processing
units (GPUs). More than a decade ago, shallow water solvers were first implemented
on GPUs (Acuña and Aoki, 2009; Brodtkorb et al., 2010; Brodtkorb et al., 2012).
Since then, GPU implementations of the SWEs have become increasingly popular
(Horváth et al., 2016; Xing et al., 2018; Echeverribar et al., 2019; Xia et al., 2019;
Morales-Hernández et al., 2021).
The accuracy of the simulated inundated areas also depends on the considered

processes and the modeled level of detail. For the accurate assessment of pluvial
flood hazard, a comprehensive approach including simulation of interception of rain-
fall by vegetation, infiltration of surface water into soil, flow through culverts, and
urban sewer network systems is necessary. Spatial variations in land use, small-scale
alterations of street elevation, clogged culverts or sewer overflows may have signifi-
cant effects on local flood hazard. Particularly in urban areas, soil permeability may
change abruptly due to sealed surfaces or green infrastructure (GI), e. g. green roofs,
bioswales, and rain gardens, which are intended to reduce flash flood risk as part of
low-impact development (Rosenzweig et al., 2021). For a thorough assessment of hot
spots in the urban stormwater management system, coupling the surface runoff with
the sewer network is inevitable. Thus, spatially distributed modeling of these hy-
drologic processes and their interactions at a high resolution is important (Almeida
et al., 2016; Berland et al., 2017; Noh et al., 2018). To guide regional planners in
the development of new city quarters, multiple simulations need to be evaluated
that account for different scenarios. Moreover, numerous simulations or so-called
ensemble simulations are needed for calibration and uncertainty analysis, thus fast
runtimes are crucial. To accelerate accurate flood hazard assessment, culverts, sew-
ers, and multiple submodels for spatially distributed rainfall runoff processes need
to be included and preferably implemented on the GPU.
The aim of this thesis is to contribute to the recent research on fast and accurate

numerical schemes and on locally relevant hydrodynamic modeling of fluvial and
pluvial flood hazards. Specifically, this thesis goes beyond the existing literature
with the following key points. First, a novel second-order scheme for a fast and
accurate hydrodynamic simulation over abruptly changing topography is presented.
Second, this research bridges the gap between detailed local models that account
for small-scale features affecting flood hazard and large-scale models that partially

3
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neglect them by enabling high resolutions through innovative computational meth-
ods. Third, this thesis aims for a comprehensive assessment of fluvial and pluvial
floods by integrating multiple model components.
The main chapters of this thesis each correspond to a scientific paper. Chapter 2

introduces a well-balanced shallow water scheme, which is second-order accurate and
builds upon a novel reconstruction approach. Furthermore, an economical approxi-
mation of the source term and a robust treatment of wet–dry zones are introduced,
which reduce computation times. Chapter 3 presents the application of the proposed
second-order scheme for the delineation of inundated areas for a stream network of
33,880 km on a 2 by 2 m2 grid. Moreover, a novel approach for maintaining con-
sistent flood probabilities along the river network is proposed. In Chapter 4, an
integrated framework for pluvial flood hazard assessment is presented, where each
model component operates in a spatially distributed way so that local measures, e. g.
GI, are fully taken into account. The complete surface runoff model is implemented
on the GPU enabling fast runtimes. Finally, Chapter 5 presents a summary along
with the main conclusions and possible directions for future work.
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2 A fast second-order shallow water
scheme on two-dimensional structured
grids over abrupt topography

The present chapter corresponds to the following scientific publication in its original
form:

A. Buttinger-Kreuzhuber, Z. Horváth, S. Noelle, G. Blöschl, and J. Waser
(2019). A fast second-order shallow water scheme on two-dimensional structured
grids over abrupt topography. Advances in Water Resources 127, pp. 89–108. doi:
10.1016/j.advwatres.2019.03.010.

Abstract

This paper presents a finite volume scheme on structured grids to simulate shallow
flows over complex terrain. The situation of shallow downhill flow over a step is
particularly challenging for most shallow water schemes. We study this situation in
detail and devise a novel second-order reconstruction strategy, which gives superior
results over former hydrostatic reconstruction (HR) schemes. The reconstruction
step is based on a recent first-order HR method, which improves shallow flows over
steps. The proposed second-order scheme is well-balanced, positivity-preserving, and
handles dry cells. When compared with the original HR, we lower the computational
burden by using a simplified quadrature for the bed slope source term. We test the
scheme on various benchmark setups to assess accuracy and robustness, where the
method produces comparable results to other HR-based schemes in most cases and
superior results in the case of shallow downhill flow over steps. The novel second-
order scheme is capable of simulating large-scale real-world flood scenarios fast and
accurately.

2.1 Introduction

The shallow water equations (SWEs) describe the motion of an incompressible fluid
under the gravitational force. They provide plausible and reliable results of water
levels for tsunamis, river floods, dam breaks, and levee breaches (Audusse et al.,
2004; Brodtkorb et al., 2012; Asunción et al., 2013; Hervouet and Petitjean, 1999;
Liang and Marche, 2009; Russo, 2005). Based on the assumption that the horizontal
length scale is large compared to the vertical length scale, the SWEs can be derived
by depth averaging the Navier-Stokes equations (Temam, 1984; Whitham, 1999a).
The finite volume method (FVM) is a common numerical method for solving the

SWEs. For the spatial discretization, a computational grid has to be chosen. Un-
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structured triangular meshes are able to incorporate complex geometries, however
they require time-consuming mesh generation. In contrast, rectangular grids lack
the pre-processing step at the expense of poor resolution of topographic features not
aligned with the grid. This issue can be overcome with the cut-cell technique (An and
Yu, 2012; Ingram et al., 2003). Furthermore, in the context of second-order meth-
ods, slope reconstruction on unstructured grids has a great influence on the solution
quality, thus making it harder to compare schemes (Buffard and Clain, 2010; Hou
et al., 2014). Also, numeric models on Cartesian grids are easier to implement and
faster than their counterparts on unstructured grids. They are suitable for straight-
forward parallelization on graphics processing units (GPUs) due to their simplicity,
which reduces computation times by a factor of up to 100 compared to conventional
programming models (Brodtkorb et al., 2012; Horváth et al., 2016; Vacondio et al.,
2016). For temporal evolution, usually a strong-stability-preserving Runge-Kutta
method is employed, such as the second-order Heun’s method (Bouchut, 2007; Got-
tlieb et al., 2001).
A stable and efficient way to solve the SWEs are schemes derived by the hydro-

static reconstruction (HR) method, developed by Audusse et al. (2004). The su-
perior stability properties of this scheme – it is positivity preserving, well-balanced
and satisfies a semi-discrete in-cell entropy inequality – contributed to its popularity
(Berthon and Foucher, 2012; Castro et al., 2007; Clain et al., 2016; Hou et al., 2013a;
Liang and Marche, 2009; Noelle et al., 2006). The HR scheme in combination with a
kinetic solver satisfies a fully discrete entropy inequality with an error term coming
from the topography (Audusse et al., 2016). Thus, convergence of this scheme can
be expected for Lipschitz continuous bathymetry.
In first-order and second-order finite volume (FV) schemes the bottom topogra-

phy is approximated by piecewise constant and piecewise linear functions, respec-
tively, thus giving rise to discontinuities in the bottom at the discrete level. In
practice, large discontinuous bottom steps may occur at coarse spatial resolutions
or in stormwater scenarios, where the water layer is often thinner than the stepsize
of the bottom jumps. As bottom steps appear at the discrete level of FVMs, there is
a need to stretch the applicability of the SWEs also to cases involving discontinuous
bathymetries. This leads to mathematical and numerical problems, since then the
product of the depth and the bottom gradient cannot be understood in a distribu-
tional sense. The mathematical theory of nonconservative products in the source
term is an active field of research (Dal Maso et al., 1995). Even if discontinuous
bathymetries are not within the theoretical assumptions of the SWEs, Morales de
Luna et al. (2013) note that the SWEs still give reasonable results in the case of
small enough bottom jumps. Altogether, this motivates the study of shallow water
flows over bottom steps and their numerical approximation.
In the case of shallow downhill flow, the original first-order HR scheme does not

properly account for the acceleration due to a sloped bottom (Delestre et al., 2012).
This effect can be mitigated by switching from a first-order to a second-order approx-
imation. Morales de Luna et al. (2013) improve the original first-order HR scheme
in the case of partially wet interfaces. Recently, Chen and Noelle (2017) proposed a
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new reconstruction which features an even better approximation of the source term
in case of shallow downhill flows, leading to a new first-order scheme, called the
CN scheme in this work. Also they present a way to investigate and derive the two
existing HR schemes by means of subcell reconstructions. Xia et al. (2017) present
a Surface Reconstruction Method (SRM) to overcome the problem of partially wet
interfaces, which they describe by the term “waterfall effect”. In their first-order
scheme, a second-order approximation of the bottom is used in all cells to reconstruct
the water surface and the bottoms at the interfaces for the flux and source term
computation. Other strategies to further improve the flow over abrupt topography
include considering the conservation of the total head instead of the conservation of
the hydrostatic equilibrium. Such schemes are also called energy-balanced methods
and typically require additional waves in the approximate Riemann solver (ARS) to
resolve the stationary bottom discontinuity at the interface. This leads to additional
complexity in the solver, both implementation-wise and performance-wise (Goutal
et al., 2017; LeFloch and Thanh, 2011; Murillo and García-Navarro, 2010; Murillo
and García-Navarro, 2013; Murillo and Navas-Montilla, 2016).
Another numerical difficulty arises at wet-dry zones, characterized by interfaces

between dry and wet cells. A robust numerical scheme should be able to maintain
nonnegativity of water depth, but should also avoid unphysically high velocities in
these sensitive regions. Typically, at wet-dry zones, the wet cells only feature a thin
layer of water thus giving rise to large velocities when the discharge is divided by
a small depth. Different methods are tailored to tackle this problem (Hou et al.,
2013b; Horváth et al., 2015). In Hou et al. (2013b), a novel source treatment, which
is slightly faster than the original source terms as in Audusse et al. (2004), for
unstructured grids is introduced.
In this paper, we present a new two-dimensional scheme, which is second-order

accurate. It is based on the hydrostatic reconstruction procedure of Chen and Noelle
(2017). The second-order accuracy allows us to reduce the discretization error and
perform more accurate simulation runs. We apply a simple source treatment, which
is computationally efficient and leads to a minor loss of accuracy in typical use cases.
Furthermore, our proposed reconstruction is adapted to limit the velocities, which
reduces the occurrence of unphysically high velocities, and to correctly reconstruct
the solution variables in the vicinity of abrupt changes in the bottom topography and
in the water levels. In particular, our method is able to capture the drying process
in regions with complex terrain in a robust and efficient way. This approach ensures
that the time step, which is connected to the velocities by the Courant–Friedrichs–
Lewy (CFL) condition, is not overly restricted when simulating large time spans.
Our proposed source term approximation coincides with the simple and economical
source term of Hou et al. (Hou et al., 2013b) in fully wet regions. For shallow flow
over abrupt topography, the novel scheme outperforms previous schemes based on
the HR method. We remark again that discontinuous bottom steps are not within
the theoretical assumptions on the derivation of the shallow water (SW) model,
however, they appear by construction in first-order and second-order FVMs. Thus,
the correct handling of bottom steps in the numerical approximation, including the
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2 A fast second-order shallow water scheme

reconstruction procedure as well as the source term discretization, is important.
We propose to reconstruct the HR water depth from bottom slopes instead of water
level slopes in regions where the topography changes abruptly. This novel “adaptive”
second-order reconstruction allows us to significantly increase accuracy of shallow
flow down a bottom step, when compared to other second-order HR-based schemes.
The paper is organized as follows. In Section 2.2, we discuss the model equations,

the HR schemes and present the second-order scheme based on a new HR (Chen and
Noelle, 2017) in detail. In Section 2.3, we present numerical experiments highlighting
the advantages and disadvantages of our proposed scheme. We extensively verify the
presented scheme on multiple benchmark tests, including a dam break over bottom
steps, seven Riemann problems, the parabolic bump, and the parabolic basin. We
validate the scheme on the Malpasset dam break and a river flood event. Finally,
in Section 2.4, we conclude the findings of this work and give a brief outlook into
future works.
This paper contributes with the following key points:

1) a two-dimensional well-balanced scheme based on an improved hydrostatic
reconstruction

2) a novel second-order reconstruction which yields superior results for shallow
downhill flows over a step,

3) an economical approximation of the source term to speed up computation,

4) reduction of unphysically high velocities at wet-dry zones.

2.2 Model equations and numerical methods

2.2.1 The shallow water equations

In this section, we describe the shallow water model and the FVM for SW schemes.
The hyperbolic conservation law described by the two-dimensional shallow water
equation (SWE), also referred to as the Saint-Venant system, with geometric source
term can be written as hhu

hv


t

+

 hu

hu2 + 1
2gh

2

huv


x

+

 hv

huv

hv2 + 1
2gh

2


y

=

 0

−ghbx
−ghby

 , (2.1)

where h represents the water height, hu is the discharge along the x-axis, hv is the
discharge along the y-axis (Figure 2.1a), u and v are the average flow velocities in x
and y-direction respectively, g is the gravitational constant, and b is the bathymetry
(assumed to be time-independent). Subscripts represent partial derivatives, e. g., Ut

stands for ∂U
∂t . In vector form the system writes

Ut + F (U, b)x + G (U, b)y = S (U, b) , (2.2)
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b

h
w

→
hu

bj

hj
wj−1

Cj−1 Cj Cj+1

Vj+ 1
2
− Vj+ 1

2
+

Ij+ 1
2

Cj−1 Cj Cj+1

⇒
Fj+ 1

2

Ij+ 1
2

Cj−1 Cj Cj+1

Fig. 2.1. Schematic one-dimensional view of a shallow water flow, definition of the variables,
and flux computation. a) Continuous variables. b) The conserved variables U = [h, hu, hv]

T

are discretized as cell averages Uj,k on the cell Cj,k. c) Left- and right-sided point values
Vj+1/2∓,k are reconstructed at the cell interface Ij+1/2,k. d) Fluxes F are computed using
the HLL flux at the cell interfaces.

where U = [h, hu, hv]T is the vector of conserved variables, F and G are flux func-
tions. The bed slope term S models the fluid’s acceleration due to the gravitational
forces. An additional friction term Sf (U) can be included on the right hand side
of (2.2), which is introduced in Section 2.2.10.
In two dimensions, the SWEs allow for complicated steady state solutions, how-

ever we restrict ourselves to two important steady-state equilibria. Following Chen
and Noelle (2017), there is the still-water equilibrium, i. e.,

u, v = 0 and ∇w = 0, (2.3)

where w denotes the water level w = h+B, and the lake at rest equilibrium, which
includes dry shores, i. e.,

hu, hv = 0 and h∇w = 0. (2.4)

If a numerical scheme is capable of balancing source and numerical flux terms for
these two stationary solutions it is called well-balanced and thus preserves the lake
at rest and also the still-water equilibrium.
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2 A fast second-order shallow water scheme

2.2.2 Discretization

We choose a uniform grid xα := α∆x and yβ := β∆y, where ∆x and ∆y are the
cell sizes. We denote by Cj,k the cell Cj,k := [xj−1/2, xj+1/2]× [yk−1/2, yk+1/2]. The
SWEs are discretized by the method of lines. The FVM is chosen for the spatial
discretization on top of the uniform grid. An FVM discretizes the conserved variables
U as cell averages, e. g., Uj,k for the finite volume Cj,k. This yields a system of
ordinary differential equations for the cell averages

d

dt
Uj,k(t) = −

Fj+ 1
2
,k(t)− Fj− 1

2
,k(t)

∆x
−

Gj,k+ 1
2
(t)−Gj,k− 1

2
(t)

∆y
+ Sj,k(t), (2.5)

where Fj∓ 1
2
,k and Gj,k∓ 1

2
are the discretized interface fluxes and Sj,k is an appro-

priate source term discretization.

2.2.3 Hydrostatic reconstruction

To achieve well-balancedness, it is necessary to introduce a special reconstruction
for the Riemann states that are fed into the approximate Riemann solver. Assum-
ing time-independent bathymetry values bj,k := b(xj , yk) at the cell centers, the
essential idea of the hydrostatic reconstruction (HR) technique is to redefine the
interface bottom values used for deriving the Riemann states in oreder to ensure
well-balancedness and positivity. The name HR method originates from the fact
that the associated HR scheme balances the hydrostatic pressure and the topo-
graphic source terms at each interface in the still water steady-state. We illustrate
the technique only in x-direction, the application to the y-direction can be done
analogously.
In the following, we briefly summarize the original first-order HR of Audusse

(Aud) (Audusse et al., 2004) and the modification of Chen and Noelle (CN) (Chen
and Noelle, 2017). In both first-order schemes, there is only one hydrostatically
reconstructed bathymetry value at each interface. The original first-order HR eval-
uates the interface bottom values b∗ in an upwind fashion (Audusse et al., 2004),

b∗,Aud
j+ 1

2
,k

= max(bj+1,k, bj,k). (2.6)

The left- and right-sided interface heights with respect to the interface Ij+1/2,k

between cell Cj,k and Cj+1,k are then defined as

h∗,Aud
j+ 1

2
−,k(t) = max(wj,k(t)− b∗,Aud

j+ 1
2
,k
, 0),

h∗,Aud
j+ 1

2
+,k

(t) = max(wj+1,k(t)− b∗,Aud
j+ 1

2
,k
, 0).

(2.7)

This definition ensures the nonnegativity of the water depths h.
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wj

b∗,Aud
j+1/2

h∗,Aud
j+ 1

2
−

Cj

wj

b∗,CN
j+1/2

h∗,CN
j+ 1

2
−

Cj

(Aud) (CN)

Fig. 2.2. First-order hydrostatic reconstruction in the case of shallow flow over discon-
tinuous bottom. Water levels w are shown as blue lines and the bathymetry is visualized
in gray. At the right partially wet interface, Audusse’s scheme gives interface bathymetry
values b∗,Aud, which are different to the values b∗,CN provided by the CN scheme. The HR
interface bathymetry values are marked with red asterisks.

The CN scheme (Chen and Noelle, 2017) improves the original reconstruction on
partially-wet cases where an adjacent water level is lower than the bottom topogra-
phy, i. e.

wj+1/2,k(t) := min(wj,k(t), wj+1,k(t)) < b∗,Aud
j+ 1

2
,k
. (2.8)

The CN scheme defines the interface bottom values b∗ as

b∗,CN
j+ 1

2
,k

(t) = min(b∗,Aud
j+ 1

2
,k
, wj+ 1

2
,k(t)). (2.9)

The interface heights h∗ are given by

h∗,CN
j+ 1

2
−,k(t) = min(wj,k(t)− b∗,CN

j+ 1
2
,k

(t), hj,k(t)),

h∗,CN
j+ 1

2
+,k

(t) = min(wj+1,k(t)− b∗,CN
j+ 1

2
,k

(t), hj+1,k(t)).
(2.10)

For a constant water level W , the interface depths are then continuous across inter-
faces, that is

max(W − b∗,Aud
j+ 1

2
,k
, 0) = h∗,Aud

j+ 1
2
−,k = h∗,Aud

j+ 1
2

+,k
= max(W − bAud

j+ 1
2
,k
, 0). (2.11)

The continuous depths then make it easy to show well-balancedness for consistent
fluxes, see Section 2.2.9. We remark that the hydrostatic interface heights h∗ of the
two first-order schemes do not differ, only the HR interface bathymetry values differ
in partially wet cells (Chen and Noelle, 2017), compare also Figure 2.2.
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2.2.4 Second-order reconstruction

For second-order accuracy, left- and right-sided point values have to be computed
at the cell interface midpoints through slopes taking into account the neighbouring
values. The left-sided point values of a cell Cj,k are then denoted by subscripts
j − 1/2+ and k − 1/2+ in x- and y-dimension, respectively. We reconstruct V =
[h, u, v, w]T instead of the conserved variables (Audusse et al., 2004; Bouchut, 2007).
From now on, we omit time dependence in the equations, since all reconstructed
variables are time-dependent. To suppress unphysical oscillations, the generalised
minmod-limiter is applied to the slopes (Van Leer, 1979; Sweby, 1984; Nessyahu
and Tadmor, 1990)

DxVj,k = minmod

(
θ
Vj,k −Vj−1,k

∆x
,
Vj+1,k −Vj−1,k

2∆x
, θ

Vj+1,k −Vj,k

∆x

)
,

DyVj,k = minmod

(
θ
Vj,k −Vj,k−1

∆y
,
Vj,k+1 −Vj,k−1

2∆y
, θ

Vj,k+1 −Vj,k

∆y

)
,

(2.12)

where θ between 1 and 2. The minmod limiter is given by (Nessyahu and Tadmor,
1990)

minmod(a, b, c) =


min(a, b, c) if a, b, c ≥ 0,

max(a, b, c) if a, b, c ≤ 0,

0 otherwise
(2.13)

The value of θ controls the amount of dispersion added to the system and is chosen
to be 1.3 in our simulations. This choice of slope limiting conserves the maximum
principle. The left- and right-sided water depth point values are given by

hj− 1
2

+,k = hj,k −
∆x

2
Dxhj,k, hj,k− 1

2
+ = hj,k −

∆y

2
Dyhj,k,

hj+ 1
2
−,k = hj,k +

∆x

2
Dxhj,k, hj,k+ 1

2
− = hj,k +

∆y

2
Dyhj,k,

(2.14)

and the left- and right-sided water level point values by

wj− 1
2

+,k = wj,k −
∆x

2
Dxwj,k, wj,k− 1

2
+ = wj,k −

∆y

2
Dywj,k,

wj+ 1
2
−,k = wj,k +

∆x

2
Dxwj,k, wj,k+ 1

2
− = wj,k +

∆y

2
Dywj,k.

(2.15)

Velocity reconstruction

According to Bouchut (2007), we reconstruct velocities [u, v] = [hu/h, hv/h] instead
of discharges hu, hv to avoid high velocities near dry cells. To satisfy the conser-
vativity requirement dimension-wise on the discharges, the point values have to
satisfy

huj,k =
1

2

(
hj− 1

2
+,kuj− 1

2
+,k + hj+ 1

2
−,kuj+ 1

2
−,k

)
, (2.16)
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and

huj,k =
1

2

(
hj,k− 1

2
+uj,k− 1

2
+ + hj,k+ 1

2
−uj,k+ 1

2
−

)
, (2.17)

and analogously for hv. Thus, the velocity point values are modified accordingly to
these equations giving

uj− 1
2

+,k =
huj,k
hj,k

−
hj+ 1

2
−,k

hj,k

∆x

2
Dxuj,k,

uj+ 1
2
−,k =

huj,k
hj,k

+
hj− 1

2
+,k

hj,k

∆x

2
Dxuj,k,

(2.18)

and

uj,k− 1
2

+ =
huj,k
hj,k

−
hj,k+ 1

2
−

hj,k

∆y

2
Dyuj,k,

uj,k+ 1
2
− =

huj,k
hj,k

+
hj,k− 1

2
+

hj,k

∆y

2
Dyuj,k.

(2.19)

The same modification is applied for the velocity v. We remark that the depth
point values in (2.14) are not yet hydrostatically reconstructed. If the interface
water depth, e. g., hj+1/2−,k, is smaller than some dry threshold εdry, we set the
respective velocity to zero in the reconstruction step, i. e. huj,k/hj,k is set to zero if
hj,k < ε for all j, k.

Second-order hydrostatic reconstruction

Here, we describe the procedure used in Audusse et al. (2004) to get second-order
HR water heights h∗ at the interfaces. The left- and right-sided second-order bottom
point values are given by subtracting the water depth from the level, i. e.

bj− 1
2

+,k = wj− 1
2

+,k − hj− 1
2

+,k, bj,k− 1
2

+ = wj,k− 1
2

+ − hj,k− 1
2

+,

bj+ 1
2
−,k = wj+ 1

2
−,k − hj+ 1

2
−,k, bj,k+ 1

2
− = wj,k+ 1

2
− − hj,k+ 1

2
−.

(2.20)

From the second-order bottom point values at the interfaces, the HR interface bot-
tom values are set to

b∗,Aud
j+ 1

2
,k

= max(bj+ 1
2
−,k, bj+ 1

2
+,k). (2.21)

Then the hydrostatic interface heights h∗ are reconstructed by

h∗,Aud
j− 1

2
+,k

= max(wj− 1
2

+,k − b
∗,Aud
j− 1

2
,k
, 0).

h∗,Aud
j+ 1

2
−,k = max(wj+ 1

2
−,k − b

∗,Aud
j+ 1

2
,k
, 0).

(2.22)

The procedure is visualized in Figure 2.3a,b.
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Dxwj

Dxhj

b∗,Aud
j+1/2

h∗,Aud
j− 1

2
+

h∗,Aud
j+ 1

2
−

Dxwj

Dxhj

Dxbj

Cj

b∗,CN
j+1/2

wj
h∗,CN
j− 1

2
+ h∗,CN

j+ 1
2
−

Cj

(a) (b)

(c) (d)

Fig. 2.3. Second-order reconstruction for partially wet cells. a) From the cell centered
values (marked with dots), slopes for the water depth and water levels and are derived in the
scheme of Audusse et al. b) Then, the bottom slope and HR point values are reconstructed.
c) For the BHNW scheme, we additionally reconstruct the bottom slope if interfaces are
partially wet. d) In this case, the water level slope is recomputed from the water depth and
bottom slope and used to derive the HR bottom values (red asterisks). We see that the left
HR interface depth h∗j−1/2+ differs in the two second-order HR reconstructions.

“Adaptive” second-order hydrostatic reconstruction

We introduce a new second-order reconstruction in combination with the recent
hydrostatic reconstruction introduced by Chen and Noelle (2017). We propose a
reconstruction that is additionally based on bottom values in case of “large” discon-
tinuities in bathymetry and water levels, as explained for the x-dimension in the
following paragraph. If we might land in a “partially wet” situation, i. e.

wj− 1
2

+,k − hj− 1
2

+,k > wj−1,k or wj+ 1
2
−,k − hj+ 1

2
−,k > wj+1,k, (2.23)

then, at this cell, we check if the bottom slope

Dxbj,k = minmod

(
θ
bj,k − bj−1,k

∆x
,
bj+1,k − bj−1,k

2∆x
, θ
bj+1,k − bj,k

∆x

)
. (2.24)

is greater than the water level slope Dxwj,k. If the conditions

|Dxwj,k| > |Dxbj,k| (2.25)
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and (2.23) hold, we reset the water level slope

Dxwj,k = Dxhj,k + Dxbj,k. (2.26)

We proceed by recalculating the second-order water level point values (2.15). Condi-
tion (2.25) ensures a correct treatment at partially wet cells and at wet-dry regions
of an advancing wave front on a sloped bottom. We remark that the bottom slopes,
e. g., Dxbj,k in (2.24), can be precomputed for time-independent bathymetry values.
Then, we derive a second-order HR bottom value per interface,

b∗,CN
j− 1

2
,k

= min
(
b∗,Aud
j− 1

2
,k
,min(wj− 1

2
+,k, wj− 1

2
−,k)

)
,

b∗,CN
j+ 1

2
,k

= min
(
b∗,Aud
j+ 1

2
,k
,min(wj+ 1

2
+,k, wj+ 1

2
−,k)

) (2.27)

from the water level point values (2.15) and Audusse’s HR bottom values b∗,Aud

(2.21), which are also depending on the water level point values. We set the second-
order HR left and right interface depth values h∗ to

h∗,CN
j− 1

2
+,k

= min(wj− 1
2

+,k − b
∗,CN
j− 1

2
,k
, hj− 1

2
+,k),

h∗,CN
j+ 1

2
−,k = min(wj+ 1

2
−,k − b

∗,CN
j+ 1

2
,k
, hj+ 1

2
−,k),

(2.28)

using the water depth (2.14) and level (2.15) point values, see also Figure 2.3c,d.
Equations (2.27) and (2.28) are the second-order analogs to equations (2.9) and
(2.10). The HR reconstructed depth values (2.28) and (2.22) agree in cells where
either condition (2.23) or condition (2.25) is not true for the cell itself and all
neighboring cells. In general, our HR interface point values do not agree with the
original HR interface point values, compare Figure 2.3.
This adaptive reconstruction strategy is necessary, since a naive second-order

reconstruction can not be applied to all cells as in the vicinity of strong bottom
jumps a back wave might emerge at the top of the step. This unphysical behavior
is caused by an unphysical bottom reconstruction in the upper cell of the bottom
jump.
We conclude this section with properties of the HR interface depth values. Since

the reconstruction operator obeys the maximum principle for θ ≤ 2, particularly
hj− 1

2
+,k, hj+ 1

2
−,k ≥ min(hj−1,k, hj,k, hj+1,k) ≥ 0, the second-order reconstructed

interface depths hj+ 1
2
−,k are nonnegative by construction, see (2.12) and (2.14).

Since furthermore in any case the water levels are greater than the reconstructed
bathymetry, e. g., wj+ 1

2
−,k ≥ b∗j+ 1

2
,k
, the reconstructed HR water depths fulfill

0 ≤ h∗
j+ 1

2
±,k ≤ hj+ 1

2
±,k, 0 ≤ h∗

j,k+ 1
2
± ≤ hj,k+ 1

2
±, (2.29)

for all interfaces Ij+1/2,k and Ij,k+1/2.
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2 A fast second-order shallow water scheme

2.2.5 Source terms

We revisit the bathymetry source term S in a cell Cj,k for the second-order HR
scheme of Audusse et al. (2004). Clearly, the depth source term Sh is zero, i. e.

Shj,k = 0. (2.30)

The momentum source terms Shu and Shv are split into interface parts and a cen-
tered part Ŝj,k, i. e.

Shuj,k = Shu
j− 1

2
+,k

+ Shu
j+ 1

2
−,k + Ŝhuj,k, (2.31)

Shvj,k = Shv
j,k− 1

2
+

+ Shv
j,k+ 1

2
− + Ŝhvj,k. (2.32)

The centered source terms read

ŜAud,hu
j,k = − g

∆x

hj+ 1
2
−,k + hj− 1

2
+,k

2
(bj+ 1

2
−,k − bj− 1

2
+,k) (2.33)

ŜAud,hv
j,k = − g

∆y

hj,k+ 1
2
− + hj,k− 1

2
+)

2
(bj,k+ 1

2
− − bj,k− 1

2
+). (2.34)

ensure second-order consistency in regions where the solution is smooth. If the solu-
tion is varying a lot, the source term is distributed towards the interfaces (Bouchut,
2007). The interface terms are only described for the x-dimension, all the steps are
repeated analogously in y-dimension for Shv

j,k− 1
2

+
and Shv

j,k+ 1
2
−. The interface source

terms in the second-order HR scheme (Audusse et al., 2004) are given as

SAud,hu
j− 1

2
+,k

= − g

∆x

hj− 1
2

+,k + h∗,Aud
j− 1

2
+,k

2

(
hj− 1

2
+,k − h

∗,Aud
j− 1

2
,k

)
,

SAud,hu
j+ 1

2
−,k = − g

∆x

h∗,Aud
j+ 1

2
−,k + hj+ 1

2
−,k

2

(
h∗,Aud
j+ 1

2
,k
− hj+ 1

2
−,k

)
.

(2.35)

The smoother the solution, the smaller the differences of the variables across the
interfaces. Thus the source term is mostly influenced by the cell centered source
term. However, since the source terms (2.35) only depend on the smoothness of the
water level w and depth h, discontinuities in the bottoms might be interpreted only
as a centered source term reflecting the water level slope (Figure 2.4).
We approximate the source term without a centered source term (Hou et al.,

2013a; Hou et al., 2013b), i. e.

Shuj,k = Shu
j− 1

2
+,k

+ Shu
j+ 1

2
−,k, (2.36)

Shvj,k = Shv
j,k− 1

2
+

+ Shv
j,k+ 1

2
−, (2.37)
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wjhj− 1
2

+

hj+ 1
2
−

∆bj Ŝj

Cj

wj

hj
Sj+ 1

2
−

∆b∗,CN
j+ 1

2
−

h∗
j+ 1

2
−

Cj

(Aud) (BHNW)

Fig. 2.4. The second-order reconstruction of Audusse et al. leads only to a centered source
term Ŝj (yellow) in the upper cell, as the HR bottom values (red asterisks) agree with the
second-order bottom values. In contrast, in our proposed BHNW scheme, interface source
terms appear in the upper cell, where the right subcell source term labeled Sj+1/2− accounts
for the right bottom jump. The source terms are visualized as trapezoids based on the water
depths and the difference ∆bj = bj+1/2− − bj−1/2+ of the second-order bottom values for
the centered term, or, the difference ∆b∗,CN

j+1/2− = b∗,CN
j+1/2 − bj between reconstructed and

cell-centered bottom value for the interface term.

where the left and right interface source term is given by

Shu
j− 1

2
+,k

= − g

∆x

hj,k + h∗,CN
j− 1

2
+,k

2

(
bj,k − b∗,CN

j− 1
2
,k

)
,

Shu
j+ 1

2
−,k = − g

∆x

h∗,CN
j+ 1

2
−,k + hj,k

2

(
b∗,CN
j+ 1

2
,k
− bj,k

)
.

(2.38)

and analogously for Shvj,k. The simple approximation slightly reduces the computa-
tional burden and is easier to implement. The difference between the two source
term approximations is visualized in Figure 2.5 for fully wet cells. We remark that
our source term treatment consisting of (2.36), (2.37) and (2.38) also leads to dif-
ferences in wet regions, when compared to the original HR method (Audusse et al.,
2004).
A similar approximation of the source term without the centered part can also

be found in the works of Hou et al. (Hou et al., 2013a; Hou et al., 2013b) with the
following source terms Shu

j− 1
2

+,k
,Shu

j+ 1
2
−,k in (2.36) and (2.36)

SHou,hu
j− 1

2
+,k

= − g

∆x

hj,k + h∗,Aud
j− 1

2
+,k

2

(
bj,k − b∗,Hou

j− 1
2

+,k

)
,

SHou,hu
j+ 1

2
−,k = − g

∆x

h∗,Aud
j+ 1

2
−,k + hj,k

2

(
b∗,Hou
j+ 1

2
−,k − bj,k

)
.

(2.39)
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2 A fast second-order shallow water scheme

(Aud)

bj−1

wj−1

wj

wj+1

∗

∗

SAud
j− 1

2
+

Ŝj

(Simple)

bj−1

wj−1

wj

wj+1

∗

∗

Sj− 1
2

+

Sj+ 1
2
−

Fig. 2.5. Approximation of second order source terms as in Audusse et al. (Aud) or simply
by two interface source terms, visualized in one spatial dimension. The images show the
difference of the source term approximation SAud

j−1/2+ + Ŝj of Audusse et al. and the simple
approximation Sj−1/2+ + Sj+1/2−. In this case, SAud

j+1/2− = 0.

In the robust and simple scheme of Hou et al. (Hou et al., 2013a; Hou et al., 2013b)
only the bed elevations at the lower side are modified resulting in different bottom
values at the left and the right interface to maintain well-balancedness, i. e.

b∗,Hou
j− 1

2
+,k

= min(b∗,Aud
j− 1

2
,k
, wj− 1

2
+,k), b∗,Hou

j+ 1
2
−,k = min(b∗,Aud

j+ 1
2
,k
, wj+ 1

2
−,k). (2.40)

Thus, there is no acceleration in the upper cell’s source terms coming from the bed
slope. Thus, as in the scheme of Audusse et al. (2004), it does not fully account for
bathymetry steps at shallow flow conditions. If in two adjacent cells there is shallow
flow and we are in a partially wet situation (2.23), then the simple source term
approximation of Hou et al. neglects the difference wj+1/2,k − b

∗,Aud
j+1/2,k. Thus, the

contribution of the bottom jump to the source term at the upper cell is neglected,
in contrast to our approach. This is further highlighted in a numerical experiment,
see Section 2.3.1.

2.2.6 Numerical fluxes

The discretized fluxes are obtained through an approximate Riemann solver, the
HLL flux FHLL (Harten et al., 1983). The hydrostatically reconstructed interface
point values U∗ = [h∗, h∗u, h∗v]T , consisting of the HR depth h∗ (2.28) and the HR
reconstructed discharges, i. e., the reconstructed velocities u (2.18), v (2.19) times
the HR depth h∗, are used as Riemann states for the numerical flux

Fj+ 1
2
,k = FHLL(U∗

j+ 1
2
−,k,U

∗
j+ 1

2
+,k

)

=
σ+
j+ 1

2
,k
F
(
U∗
j+ 1

2
−,k, bj+ 1

2
,k

)
− σ−

j+ 1
2
,k
F
(
U∗
j+ 1

2
+,k
, bj+ 1

2
,k

)
σ+
j+ 1

2
,k
− σ−

j+ 1
2
,k

+
σ+
j+ 1

2
,k
σ−
j+ 1

2
,k

σ+
j+ 1

2
,k
− σ−

j+ 1
2
,k

(
U∗
j+ 1

2
+,k
−U∗

j+ 1
2
−,k

)
.

(2.41)

18



2.2 Model equations and numerical methods

The nonnegative and nonpositive speed values σ+
j+ 1

2
,k

and σ−
j+ 1

2
,k

are functions of
the eigenvalues λ of the Jacobian of the flux F at the interface Ij+ 1

2
,k, i. e.

σ+
j+ 1

2
,k

= max

(
λ+
j+ 1

2
−,k, λ

+
j+ 1

2
+,k
, 0

)
= max

(
uj+ 1

2
−,k +

√
gh∗

j+ 1
2
−,k, uj+ 1

2
+,k +

√
gh∗

j+ 1
2

+,k
, 0

)
.

(2.42)

σ−
j+ 1

2
,k

= min

(
uj+ 1

2
−,k −

√
gh∗

j+ 1
2
−,k, uj+ 1

2
+,k −

√
gh∗

j+ 1
2

+,k
, 0

)
(2.43)

Analogously, speed values in y-direction can be derived from the Jacobian of the flux
in y-dimension G. We remark that the HLL flux is consistent, i. e. FHLL(U,U) =
F(U) and with the given choices for the speeds it is also able to handle dry states.
The HLL flux is remarkable robust, however, it is known that the HLL flux does

not resolve shear waves accurately as it ignores the contact discontinuity of the
transverse velocity (Toro, 2001). One way to fix this issue is to include the middle
wave, which leads to the Harten–Lax–van Leer-contact (HLLC) flux. To preserve
the nonnegativity of the water depths and to satisfy a discrete entropy inequality,
additional sub-characteristic conditions have to be satisfied (Bouchut, 2007). It is
possible to approximate the HLLC flux with a simplified version, i. e.,

Fhv
j+ 1

2
−,k =

vj F
h
j+ 1

2
−,k if Fh

j+ 1
2
−,k ≥ 0,

vj+1Fhj+ 1
2
−,k otherwise.

(2.44)

Other choices for the ARS include the Roe solver. Although the Roe solver is
more accurate than the HLL flux, it has difficulties with dry beds. The handling
of dry beds is often incorporated by imposing internal boundary conditions, which
adds complexity to schemes using the Roe solver (Castro et al., 2005; Murillo and
García-Navarro, 2012; Murillo and Navas-Montilla, 2016; Parés and Pimentel, 2019).
Moreover, at transcritical rarefactions, i. e., if the left or right eigenvalue is close to
zero, an entropy fix is needed (Harten and Hyman, 1983; LeVeque, 1992). Thus,
the Roe solver is a priori less robust and requires an additional parameter, which
decides if speeds are close to zero and thus considered for a transcritical rarefaction
fix (Toro, 2001).

2.2.7 Time integration

For first-order time integration, an explicit Euler is used, i. e.

Un+1
j,k = Un

j,k + ∆tR(Un)j,k, (2.45)

where

R(Un)j,k = Snj,k −
Fn
j+ 1

2
,k
− Fn

j− 1
2
,k

∆x
−

Gn
j,k+ 1

2

−Gn
j,k− 1

2

∆y
. (2.46)
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2 A fast second-order shallow water scheme

Quantities denoted by a superscript n depend on the state Un ≈ U(tn).
The CFL condition restricts the time step ∆tn = tn+1 − tn and is given by

∆tn ≤ CFL ·min

(
∆x

σnx
,
∆y

σny

)
, (2.47)

where σnx and σny represent the maximum wave speeds in x- and y-direction at
time tn. They are computed by a reduction over all interface wave speeds given by
the absolute values of (2.42) and (2.43). The CFL constant has to be positive and
is not allowed to be greater 0.25 to ensure the positivity of the two-dimensional
second-order accurate FV scheme, as we show in Section 2.2.8.
Heun’s method is used for second-order time integration. By denoting intermedi-

ate states with an asterisk, the state Un+1 at time tn+1 is given by

U∗,n+1 = Un + ∆tR(Un), (2.48)

U∗,n+2 = U∗,n+1 + ∆tR(U∗,n+1) (2.49)

Un+1 =
1

2

(
Un + U∗,n+2

)
=

1

2

(
Un + U∗,n+1

)
+

∆t

2
R(U∗,n+1) (2.50)

where the residual R(U) is defined according to (2.46). Clearly, by (2.50), the in-
termediate state U∗,n+2 does not need to be explicitly calculated. The solution U is
updated dimension-wise. First, we compute reconstructed values, fluxes and sources
in x-dimension. Second, we perform the computations in y-dimension. Afterwards
we update the solution with the combined residual.

2.2.8 Positivity preserving

Our scheme preserves the nonnegativity of the water depths, i. e.

hnj,k ≥ 0⇒ hn+1
j,k ≥ 0, (2.51)

under a certain CFL condition.
Following (Audusse et al., 2004), we require that the homogeneous flux F pre-

serves the nonnegativity of the water depths h by interface with numerical speeds
σ+(Ui, Ui+1) ≥ 0 and σ−(Ui, Ui+1) ≤ 0, which means that whenever the CFL con-
dition

0 ≤ σ(Ui, Ui+1)∆t ≤ ∆x (2.52)

with

σ(Ui, Ui+1) = max(−σ−(Ui, Ui+1), σ+(Ui, Ui+1)) (2.53)

holds, we have

hi −
1

σ−(Ui, Ui+1)

(
Fh(Ui, Ui+1)− hiui

)
≥ 0, (2.54)

hi+1 −
1

σ+(Ui, Ui+1)

(
Fh(Ui, Ui+1)− hi+1ui+1

)
≥ 0. (2.55)
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2.2 Model equations and numerical methods

The HLL flux preserves nonnegative water heights by interface, e. g., it fulfills (2.54)
and (2.55), for the specified numerical speeds σ+, σ− in (2.42) and (2.43), respec-
tively (Bouchut, 2007).
The new second-order scheme guarantees nonnegative water depth for the SWEs

(2.1) under condition (2.47) with the CFL number being halved when compared
to the CFL condition needed for a positivity-preserving first-order scheme associ-
ated with the homogeneous problem, e. g., the HLL scheme. This statement can
be proved similarly as in Audusse et al. (2004), Audusse and Bristeau (2005), and
Bouchut (2004). The positivity follows from the facts that the reconstructed depths
are nonnegative (2.22) and that the chosen second-order time integration is a convex
combination of two first-order time steps.
The two-dimensional scheme

hn+1
j,k = hnj,k −

∆t

∆x

(
Fh,n
j+ 1

2
,k
− Fh,n

j− 1
2
,k

)
− ∆t

∆y

(
Gh,n

j,k+ 1
2

−Gh,n

j,k− 1
2

)
, (2.56)

is positivity-preserving under half the CFL condition needed for the positivity-
preserving one-dimensional scheme. Thus, by choosing a positive CFL constant not
greater than 0.25 we obtain a positivity-preserving two-dimensional second-order
scheme. We remark that the different source treatment does not have any influence
on the preservation of nonnegative states. Furthermore, the numerical speed of the
HR schemes is not higher than the one of the associated homogenous scheme, since
the numerical speed is a monotone function of the water depth h, see (2.42),(2.43).

2.2.9 Well-Balancedness

We show well-balancedness in two steps. First, for the still-water steady state and,
second, for the lake at rest steady state involving wet-dry boundaries. We remark
that since our proposed scheme does not couple dimensions for the flux and source
terms, it is enough to show well-balancedness dimension-wise. In fact, each interface
can be associated with a subcell for which we will show well-balancedness. We will
use the following convex decomposition of the residuum

Rj,k = Rj− 1
2

+,k + Rj+ 1
2
−,k + Rj,k− 1

2
+ + Rj,k+ 1

2
−, (2.57)

where

Rj− 1
2

+,k = − 1

∆x

(
Fj,k − Fj− 1

2
,k

)
+ Sj− 1

2
+,k (2.58)

with analogous definitions for the other subcells.
In the still water situation, we have ∇w = 0 and hu, hv = 0 and we analyse the

nontrivial case h > 0. In this case, all cells are fully wet and the reconstructed
interface bottom levels and water depths agree with the ones defined by Audusse
et al. (2004). For a cell Cj,k, we will show that the left residuum Rj− 1

2
+,k (2.58)

vanishes. For a constant water level W , which is preserved by our second-order
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2 A fast second-order shallow water scheme

reconstruction, i. e. wj− 1
2

+,k = wj,k+ 1
2
− = wj,k− 1

2
+ = wj,k+ 1

2
− = W for all j, k,

the HR left and right interface water depths are the same by (2.11). The depth
and the y-discharge component of the residuum Rj−1/2+,k are zero because of the
consistency of the flux and the absence of source terms. For the hu-fluxes, we have

Fhu
j− 1

2
+,k

= Fhu(U∗
j 1
2
−,k,U

∗
j− 1

2
+,k

) =
g

2
h∗,2
j+ 1

2
,k
, (2.59)

and

Fhuj,k = Fhu(Uj,k) =
g

2
h2
j,k. (2.60)

by consistency of the HLL flux and since the water is at rest. Furthermore, we notice
that

hj,k − h∗j− 1
2

+,k
= W − bj,k − (W − b∗

j− 1
2

+,k
) = −(bj,k − b∗j− 1

2
+,k

), (2.61)

as the water level W is greater than the bathymetry, and use it to compute the left
source term

Shu
j− 1

2
+,k

= − g

∆x

hj,k + h∗
j− 1

2
+,k

2

(
bj,k − b∗j− 1

2
+,k

)
(2.62)

=
g

2∆x

(
h2
j,k − h

∗,2
j− 1

2
+,k

)
. (2.63)

Together, this shows

Rhu
j−1/2+,k = 0. (2.64)

The residuum vanishes also for all other subcells by the same reasons, yielding a
vanishing cell residuum Rj,k = 0. Thus, the new two-dimensional second-order
scheme is well-balanced for the still-water steady state (2.3).
In the lake at rest situation, we have h∇w = 0 and hu, hv = 0. It is enough to

show well-balancedness for wet-dry boundaries in one dimension, e. g., a dry-wet
front (Figure 2.6), i. e. hj,k = 0, hj+1,k > 0 and bj,k > wj+1,k. For a dry-wet front
bj,k = wj,k > wj+1,k = bj+1,k + hj+1,k > bj+1,k holds. We have to show that the
residuum

Rj,k = − 1

∆x

(
Fj+1/2,k + Fj−1/2,k

)
+ Sj+1/2−,k + Sj−1/2+,k (2.65)

in these cells vanishes, that is Rj,k = 0 and Rj+1,k = 0. At a wet-dry front, the
bathymetry slope Dxb can only be greater or equal the water level slope Dxw,
thus condition (2.25) is not true, and we only need to consider water levels and
depths as second-order reconstructed variables. The reconstructed water levels are
still constant at wet cells. At the interface Ij+1/2,k, we observe that b∗j+1/2,k = wj+1,k

and hj+1/2−,k = 0, therefore

h∗
j+ 1

2
+,k

= min(wj+ 1
2

+,k − b
∗
j+ 1

2
,k
, hj+ 1

2
+,k) = min(0, hj+ 1

2
+,k) = 0, (2.66)

h∗
j+ 1

2
−,k = min(wj+ 1

2
−,k − b

∗
j+ 1

2
,k
, hj+ 1

2
−,k) = 0 (2.67)
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wj+1 = W

b∗
j+ 1

2

hj = 0

Cj+1

Fig. 2.6. Lake at rest. Visualization of a dry-wet boundary, i. e. hj = 0, hj+1 > 0. The HR
interface depth values h∗j+1/2− and h∗j+1/2+ vanish. The HR interface bathymetry values b∗
are marked with red asterisks.

holds, compare Figure 2.6. By consistency of the numerical flux, the numerical flux
across the interface vanishes,

Fj+ 1
2
,k = FHLL(U∗

j+ 1
2
−,k,U

∗
j+ 1

2
+,k

) = FHLL(0,0) = 0. (2.68)

Therefore, the residualRj,k equals zero, since the cell depth hj,k and interface depths
h∗j−1/2+,k and h∗j+1/2−,k are zero.
For cell Cj+1,k, we will use the convex decomposition of the residuum (2.57) where

Fhuj+1,k =
g

2
h2
j+1,k, (2.69)

since the water is at rest. As h∗j+1/2+,k = 0, we have

Shu
j+ 1

2
+,k

= − g

∆x

hj+1,k + h∗
j+ 1

2
+,k

2

(
bj+1,k − b∗j+ 1

2
+,k

)
, (2.70)

=
g

2∆x
h2
j+1,k =

1

∆x
Fhuj+1,k. (2.71)

With Fhuj+1/2,k = 0 we conclude that Rhu
j+1/2+,k = 0. For a completely wet right

interface Ij+3/2,k),

Rj+ 3
2
−,k = 0 (2.72)

holds, compare the proof of the previous theorem. However, if Cj+1,k is degenerate,
i. e., cell Cj+2,k is dry, the second-order scheme falls back to first order, in which
case well-balancedness follows from the first-order CN scheme. In this case, equa-
tion (2.72) also holds (Chen and Noelle, 2017). Thus, the residuaRhu

j,k in x-dimension
vanish for all j, k. An adaptation of the previous arguments shows that the residua
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Rhv
j,k in y-dimension vanish. By inspection of the flux terms,Rh

j− 1
2

+,k
= Rh

j+ 1
2
−,k = 0

for all interfaces in the lake-at-rest state Together, this shows that our novel scheme
is well-balanced, also for the lake at rest steady state (2.4).
We remark that our scheme is well-balanced on a per-interface basis, thus this

property holds also on unstructured grids if the second-order reconstruction keeps
the water levels balanced.

2.2.10 Friction source terms

To provide realistic water flow, a friction term is introduced in the laboratory and
real-world scenarios. The friction term Sf is included via an additional source term

Sf (U) = −gn2h−
1
3

 0

u
√
u2 + v2

v
√
u2 + v2

 , (2.73)

where n is the Manning roughness coefficient. It is evaluated in a semi-implicit
manner by splitting the friction source term Sf into a coefficient-wise product of an
implicitly evaluated state and an explicitly evaluated friction term S̃f (Brodtkorb
et al., 2012)

Sf (U∗,n+1
j,k ) ≈ U∗,n+1

j,k S̃f (Un
j,k), (2.74)

Sf (Un+1
j,k ) ≈ Un+1

j,k S̃f (U∗,n+1
j,k ). (2.75)

where

S̃f (U) = −gn2h−
4
3

 0√
u2 + v2
√
u2 + v2

 . (2.76)

Then, the integration from time tn to tn+1 including friction is achieved by using
the following explicit update of the states

U∗,n+1 =
Un + ∆tR(Un)

1−∆t S̃f (Un)
, (2.77)

Un+1 =
1

2

Un + U∗,n+1 + ∆tR(U∗,n+1)

1− ∆t
2 S̃f (U∗,n+1)

, (2.78)

instead of (2.48) and (2.50).

2.3 Validation

We validate the scheme on various test cases, a dam break over a step, the parabolic
bump, seven Riemann problems, the parabolic basin (Thacker, 1981), the Malpasset
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2.3 Validation

dam break event, and a historical flooding. Additionally, we verify the order of the
scheme at the parabolic basin and the parabolic bump. In the following sections,
we denote the scheme of Audusse et al. (2004) by Aud and the proposed second-
order scheme by BHNW. The implementation of the scheme of Audusse et al. only
differs in the HR, the adaptive second-order reconstruction and in the source term
approximation. In particular, the generalised minmod slope limiter and the velocity
reconstruction with a dry threshold was used for all schemes. The gravity constant
g equals 9.81 in all our simulations, except for the parabolic basin where it is set to
2. The dry threshold εdry is set to 10−6 in the dam break and in the parabolic basin
and to 10−4 in the Malpasset and Lobau. The experimental order of convergence
EOC is defined as

EOC = log2

(
‖UN − U‖
‖U2N − U‖

)
, (2.79)

where U is the exact solution and UN is the numerical approximation on a mesh
with cell size ∆x · ∆y, while U2N is the numerical approximation on a mesh with
half of the cell size, i. e. ∆x/2 · ∆y/2. We use either the discrete L1-norm of the
water depth, or the maximum water depth difference, that is, the L∞-norm.

2.3.1 Dam break over a dry step

We describe the setup for a dam break over a dry step, as specified in Chen and
Noelle (2017) based on numerical experiments from Bollermann et al. (2013) and
Castro et al. (2008). The difficulty lies in the correct approximation of the wet/dry
front and the bottom step. As noted in the introduction, discontinuities in the
bottom are outside the validity range of the SW model. However, bottom steps
necessarily occur at the discrete level in FVMs and thus motivate this test. The
quasi one-dimensional test is performed on a domain with range [0, 1] × [0, 0.01].
The bottom topography b and the initial water depth h0 is given by

b(x, y) =

{
−0.1 for x < 0.1,

−0.45 otherwise,
(2.80)

and

h0(x, y) =

{
0.5 for x < 0.05,

0 otherwise,
(2.81)

respectively. We use a uniform cell size of 0.0025 m for the simulated values. The
reference solution is computed on a grid with a cell size of 10−5 m and a piecewise
linear step at x = 0.1 with 100 cells in the transition layer. The transition layer
used for approximating the bottom step is thus 0.001 m wide.
We display the results at a final time T = 0.18 s in Figure 2.7. In this case, the

scheme of Audusse et al. (2004) and the robust scheme of Hou et al. (2013a) produce
nearly identical results. As already noted in Section 2.2.5, these two schemes neglect
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Fig. 2.7. Dam break over dry step. Water level, depth and velocity profile after 18 s. The
new second-order scheme (BHNW) outperforms both the HR scheme of Audusse et al.
(Aud) and the robust scheme of Hou et al. (Robust). The latter two schemes give nearly
exactly the same results, thus the results of the robust scheme are hidden by those of
Audusse et al. The reference solution is obtained with the first-order scheme of Audusse
et al. on a finer grid with a 250 times smaller cell size and a continuous piecewise linear
approximation of the bottom jump.
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Fig. 2.8. Parabolic bump. Water level and velocity profiles for steady-state flow after 120
s. At a resolution of 0.5 m, the BHNW scheme shows visible differences from the analytical
solution (Reference) in the vicinity of the bump edges and near the top of the bump. The
first order Audusse scheme (Aud Euler) overestimates the water level and underestimates
the velocities at the discharge inflow at the left of the bump. The second-order BHNW
and Aud scheme (Aud RK2) produce nearly identical results in spite of the different source
treatments.

the jump in the water levels at the interface, which leads to incorrect predictions of
the velocities after the step. The improved HR method of the CN scheme together
with the novel adaptive second-order reconstruction enables us to capture the water
flow after the step accurately.

2.3.2 Parabolic bump

This section is devoted to show the performance of the scheme on a quasi one-
dimensional steady-state test with a parabolic bump. The scenario is set up analo-
gously to Audusse and Bristeau (2005) and Delestre et al. (2013) and is originally
from Goutal and Maurel (1997). The analytical solutions for the steady states can
be derived using the Bernoulli relation, see (Bouchut, 2007; Delestre et al., 2013).
The bathymetry is given by

b(x, y) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,

0 else,
(2.82)

for a domain of length L = 20 m and a width of 4 m (Figure 2.8).
In the case of subcritical flow, a discharge boundary condition (BC) is specified

at the inflow x = 0 and a water level BC at the outflow x = L. The water depth is
given by

h3 +

(
b− q

2ghO
− hO

)
h2 +

q2

2g
= 0, (2.83)
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Fig. 2.9. Parabolic bump. Water depths error analysis for the proposed second-order
BHNW scheme and the second-order scheme of Audusse et al. (Aud RK2) as well as for
the first-order scheme of Audusse et al. (Aud Euler). The simple source treatment has a
negligible effect on the accuracy, as the errors of the second-order scheme are nearly exactly
the same.

Table 2.1. Parabolic bump. Water depths error analysis for the proposed second-order
BHNW scheme and the second-order scheme of Audusse et al. (Aud RK2).

BHNW RK2

∆x L1 Error L1 EOC L∞ Error

1 0.5688 0.0533
0.5 0.1388 2.04 0.0170

0.25 0.0277 2.32 0.0043
0.125 0.0065 2.16 0.0018

Aud RK2

∆x L1 Error L1 EOC L∞ Error

1 0.5633 0.0532
0.5 0.1398 2.39 0.0169

0.25 0.0266 2.40 0.0045
0.125 0.0065 1.97 0.0018

where hO = wO = 2 m is the water depth at the outflow boundary. The discharge
in x-direction is specified as q = 4.42 m2/s at the left inflow boundary. Water levels
and velocities are shown in Figure 2.8 for a cell size of 0.5 m. Since in this setup
all cells are always flooded, the CN HR falls back to the original HR and thus the
first-order Audusse scheme agrees with the CN scheme. The BHNW scheme with
simple source term produces results nearly identical to the ones of the second-order
schemes of Audusse et al. (Aud RK2). This is also visible in Table 2.1, showing
that the simple source treatment has only a very small effect on the accuracy. Due
to the increased diffusivity in first-order schemes, the water levels at the discharge
inflow are underestimated (right zoom-in in Figure 2.8). An error analysis for a
range of cell sizes starting from 1 m down to 0.125 m shows that the schemes are
second-order accurate in the smooth subcritical flow regime (Figure 2.9).

2.3.3 Riemann problems

We test the scheme on several RPs including resonant cases. All RPs are defined on
the domain [−1, 1] and by an initial state U0 consisting of a left state UL = (hL, uL)
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Table 2.2. Investigated Riemann problems. Initial left and right Riemann states including
bottom levels.

RP hL hR uL uR bL bR

1 4.0 0.50537954 0.1 0.0 0.0 1.5
2 1.5 0.16664757 2.0 0.0 0.0 2.0
3 0.3 0.4 2.0 2.2 1.1 1.0
4 1.0 0.8 2.0 4.0 1.1 1.0
5 0.75 1.0 0.0 0.0 1.0 0.0
6 0.1 0.05 0.1 0.4 0.1 0.0
7 1.0 1.0 2.0 4.0 1.0 0.0
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Fig. 2.10. Riemann problem 1. Dam break over a bottom step. Audusse and BHNW
produce nearly the same results as all interfaces are fully wet. The results are in good
agreement with the analytical solution.

with a left bottom level bL for x < 0, and a right state UR = (hR, uR) with a right
bottom level bR for x > 0. The exact analytical solution is given by completing the
SW system (2.1) with ∂tb = 0 and connecting the resulting Riemann states. This
extended inhomogenenous system shows a rich solution pattern. In fact, the RP
may have no, a unique, or multiple solutions, depending on the given states and the
bottom jump (Han and Warnecke, 2014; LeFloch and Thanh, 2007; LeFloch and
Thanh, 2011). We restrict ourselves to cases with a unique solution. The investigated
setups are listed in Table 2.2. All of them result in a flow from left to right at the
bottom jump. The analytical solution is computed as outlined in Han and Warnecke
(2014). All simulations are run until 0.1 s. The cell size is set to 0.002 m. We plot
the water level and Froude number to emphasize the criticality of the flow states.
In the plots, the gray area represents the bottom topography and the initial water
level is marked with a thin dashed line. The x-axis limits are adapted to the RPs.
Riemann problem 1 (Figure 2.10) is a dam break over a bottom jump. The so-

lution consists of a left rarefaction wave, a stationary shock associated with the
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Fig. 2.11. Riemann problem 2. Subcritical flow onto a partially-wet bottom step. Both
schemes produce acceptable results, however, they are not able to converge to the analytical
solution.

bottom jump and a right shock. As all interfaces are fully wet, the combination
of adaptive reconstruction and different source treatment does not have any visi-
ble effect. Therefore, the second-order Audusse scheme produces almost exactly the
same results as the BHNW scheme, both are in good agreement with the analytical
solution.
Riemann problem 2 (Figure 2.11) is a two shock case over a bottom jump. In

this case, all interface are fully wet after 0.002 s and therefore the second-order
Audusse scheme again produces almost exactly the same results as the BHNW
scheme. However both schemes fail to accurately predict the state at the top of the
bottom jump. These first two Riemann problems can also be found in Murillo and
García-Navarro (2010) and Murillo and García-Navarro (2013).
In Riemann problem 3 (Figure 2.12), we test a supercritical regime over a down-

ward bottom step. The state at the right of the bottom jump is also supercritical,
it is not accurately captured by both the Audusse and the BHNW scheme. In
Riemann problem 4 (Figure 2.13), we test a resonant regime over a small down-
ward bottom step. In the resonance regime, the emerging solution pattern is quite
complex and involves critical intermediate states or transcritical waves. As the sta-
tionary shock associated with a bottom jump is not allowed to cross the boundaries
of strict hyperbolicity, the left-most wave has to be a rarefaction wave from the
subcritical left state to a critical state. Then, this critical state connects via a sta-
tionary shock to the supercritical states at the right. Again, the supercritical state
at the right of the bottom jump is not accurately captured by both schemes. RP 3
and RP 4 are taken from LeFloch and Thanh (2011).
In Riemann problem 5 (Figure 2.14), we test a dam break over a medium down-

ward bottom step. The left-most wave is a rarefaction from the subcritical left state
to a critical state, which then goes into a stationary hydraulic jump at the bottom
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Fig. 2.12. Riemann problem 3. Supercritical regime over a small bottom step. All interfaces
are wet, thus the Audusse scheme and the BHNW scheme produce nearly exactly the same
solution. Both schemes are not able to converge to the analytical solution, but are in
relatively good agreement with it.
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Fig. 2.13. Riemann problem 4. Resonant regime on a fully wet domain connecting a
left subcritical state with a right supercritical state. Both schemes capture the complex
emerging wave pattern. However they are not able to converge to the unique solution, but
are close to it.
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Fig. 2.14. Riemann problem 5. Dam break over a medium step. A hydraulic jump at the
bottom discontinuity emerges. The second-order schemes fail to capture the left rarefaction
wave in its whole entirety, while the first-order CN scheme is able to converge to the correct
solution.

discontinuity. In fact, the analytical solution shows that at the bottom discontinuity
x = 0 three waves are present. First, a stationary shock shifting the bottom level
bL = 1 down to an intermediate bottom level bI = 0.5 accompanied by a supercrit-
ical intermediate state. Then, a stationary hydraulic jump causes the supercritical
intermediate state to become subcritical, which is then followed by another station-
ary shock that shifts the bottom level down to bR = 0. The left rarefaction wave
is not fully captured by both schemes, instead a wrong intermediate state emerges
that connects the left state with the subcritical state at the right of the bottom
jump. This is an artefact of the second-order reconstruction as the first-oder CN
scheme is able to capture the critical state, see Figure 2.14. We remark that simply
using the classical minmod-limiter, i. e. θ = 1, is not enough.
In Riemann problem 6 (Figure 2.15), we again test a resonant regime over a

downward bottom step, but this time with the right water level below the left bottom
elevation. The emerging solution pattern is quite complex and similar to Riemann
problem 3. Again, the first left wave is a rarefaction from the subcritical left state to a
critical state, which then connects via two more shocks to the right subcritical state.
Since at the bottom jump, the interface is partially wet, the adaptive reconstruction
enables the BHNW scheme to capture the rarefaction wave at the left. To make this
point clearer, we also compare the BHNW without adaptive reconstruction against
the Audusse scheme with adaptive reconstruction in Figure 2.16. In fact, none of
these two variants is able to capture the left rarefaction wave. This demonstrates
the necessity for the adaptive second-order reconstruction. Moreover, the BHNW
scheme provides a better estimate of the right state of the bottom discontinuity,
when compared to the scheme of Audusse et al.
Riemann problem 7 (Figure 2.17) is a resonant regime over a large downward

bottom step, that connects a subcritical left state with a supercritical right state.
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Fig. 2.15. Riemann problem 6. Partially-wet resonant regime over medium downward step
connecting subcritical initial states. The BHNW scheme gets the full wave pattern right.
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Fig. 2.16. Riemann problem 6. We compare two variants, the BHNW scheme without
adaptive reconstruction and the Audusse scheme with adaptive reconstruction. Both fail to
match the full wave pattern.
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Fig. 2.17. Riemann problem 7. Partially-wet resonant regime over large downward step
connecting a subcritical left state with a supercritical right state. The BHNW and Audusse’s
scheme capture the full wave pattern, however the BHNW provides better estimates of the
right supercritical states.

The emerging solution pattern is similar to Riemann problem 6, except that the
right-most wave is now a rarefaction wave. Here, also the scheme of Audusse et al.
gets the left rarefaction right, however the BHNW achieves superior predictions of
the right supercritical states.
Concluding this section of Riemann problems, we observe that the new BHNW

scheme is able to outperform the scheme of Audusse et al. in the partially wet cases,
while never performing worse than it.

2.3.4 Thacker’s planar solution

Thacker’s planar solution, sometimes also referenced as the parabolic basin, is a
classical test case for validation. Thacker (1981) provides an analytical solution.
It describes time-dependent oscillations of a planar water surface in a parabolic
basin. It is widely used for comparing different numerical schemes (Asunción et al.,
2013; Gallardo et al., 2007; Horváth et al., 2015; Liang and Marche, 2009; Sampson
et al., 2006). Recently, Sampson et al. (2006) extended the solution of Thacker to
support bed friction. However, their solution is limited to one dimension. In this
two-dimensional case, we use the same setup as Holdahl et al. (1999), where the
bathymetry is given by

b(x, y) = D0

(
x2 + y2

L2
− 1

)
, (2.84)

where L = 2500 m, D0 = 1 m.
First, we use a constant water level w = 0 m to show well-balancedness (Fig-

ure 2.18). We can see that the velocity errors are within the accuracy of single
floating-point numbers, which we used in our implementation.
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Fig. 2.18. Parabolic basin, well-balancedness. An initial lake at rest with constant water
level w = 0 m for a parabolic basin is simulated for 1390 s on a grid with a cell size of 160
m. At the cross-section y = 0, which is marked with a red line, we extract the velocities of
wet cells. The magnitude of the velocities is within single-precision floating-point accuracy
for our proposed BHNW second-order scheme, thus it numerically preserves the lake at rest
steady-state.
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Fig. 2.19. Parabolic basin. Profiles along y = 0 of the water level and the velocity v
in y-direction for the parabolic basin after one cycle at T = 11120 s. Approximations
of the dry-wet boundary in the insets with a zoom factor of 3.0. The new second-order
scheme (BHNW) approximates the analytical solution quite well on a grid with cell size
∆x = ∆y = 80 m.
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Fig. 2.20. Parabolic basin. Water depths error analysis after 11120 s for the and the second
order schemes (BHNW RK2) and (Aud RK2) and the first-order schemes (CN Euler) and
(Aud Euler)

Table 2.3. Parabolic basin. Water depths error analysis for the proposed second-order
BHNW scheme and the second-order scheme of Audusse et al. (Aud RK2).

BHNW RK2

∆x L1 Error L1 EOC L∞ Error

160 311,910 0.0822
80 104,038 1.60 0.0539
40 35,221 1.56 0.0248
20 11,976 1.57 0.0117

Aud RK2

∆x L1 Error L1 EOC L∞ Error

160 286,592 0.0727
80 96,429 1.55 0.0521
40 33,902 1.51 0.0254
20 11,773 1.53 0.0112

Second, we test against analytically given time-dependent water surface elevation
and velocities

w(x, y) =
2AD0

L2
(x cos Ωt+ y sin Ωt+ Lb) , (2.85)

u(x, y) = −AΩ sin Ωt, (2.86)
v(x, y) = AΩ cos Ωt, (2.87)

Ω =

√
2D0

L2
, (2.88)

where we choose A = L/2, b0 = −A/2L, and the gravitational constant g = 1 m2/s
for our simulations. Then, the water level

w(x, y) =
D0

L
(x cos Ωt+ y sin Ωt+ Lb) , (2.89)

is a plane rotating with an angular frequency of Ω ≈ 5.66 · 10−4.
We let our simulation run for one full period, and compare our results at T =

11120 s (Figure 2.19). A numerical error analysis shows that our scheme has second-
order accuracy, see Figure 2.20 and Table 2.3. Reduced convergence due to the
wet-dry boundary is also reported by others (Hou et al., 2013b; Delis et al., 2011).
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Fig. 2.21. Malpasset dam break, France. Water extent 2000 seconds after the dam break.
Labels show the nine gauge locations (S6-S14) of the laboratory experiments and the three
voltage transformers (A-C) in the real world.

2.3.5 Malpasset dam break

The Malpasset dam in southern France collapsed in 1959, resulting in a 40 m high
water wave flooding the Reyran valley. The event was exhaustively studied in re-
cent years (Brodtkorb et al., 2012; George, 2011; Hou et al., 2013b; Hou et al.,
2013a; Singh et al., 2011; Valiani et al., 2002). We investigate the dam break on a
structured grid with a cell size of 20 m. Friction is included with a uniform rough-
ness coefficient of n = 0.033 m1/3/s, corresponding to weedy, stony earth channels
and floodplains with pasture and farmland. We compare simulation results with
laboratory experiments of a 1:400 scaled model (Frazao et al., 1999; Hervouet and
Petitjean, 1999). In this experiment, arrival times of the wave front (Frazao et al.,
1999) and maximum water levels (Hervouet and Petitjean, 1999) were recorded at
14 gauge locations, labelled S1 to S14 in Figure 2.21. No data are available for
the first 5 gauges, thus we use gauge locations S6 to S14 in our validation (Fig-
ure 2.22a, 2.22b). Additional data is also available for the shut-down time of voltage
transformers of the historical event (Figure 2.22c). The locations of the gauges and
transformers, as well as the inundated area after 2000 s is displayed in Figure 2.21.
Small discrepancies between the scale model and the numerical results were also re-
ported in other studies (Brodtkorb et al., 2012; George, 2011; Hou et al., 2014), and
our results are consistent with these. When compared with the scheme of Audusse
et al. (2004), minor differences only occur for gauges S8 to S10 for the water levels
and for gauges S11 and S14 for the wave arrival times, with the new BHNW scheme
obtaining comparable or slightly better results for most of the gauges except for the
maximum water level at gauge S8. Regarding performance, our scheme is slightly

37



2 A fast second-order shallow water scheme

Measured BHNW Aud

S6 S7 S8 S9 S1
0
S1
1
S1
2
S1
3
S1
4

20

40

60

80

Gauge number

M
ax

.w
at
er

le
ve
l[
m
] (a)

S6 S7 S8 S9 S1
0
S1
1
S1
2
S1
3
S1
4

0

500

1,000

Gauge number

W
av
e
ar
ri
va
lt
im

es
[s
] (b)

A B C
0

500

1,000

1,500

Transformer number

W
av
e
ar
ri
va
lt
im

es
[s
] (c)

1000 2000 3000 4000
0

0.5

1

1.5

·104

Simulation time [s]

T
ot
al

ru
n
ti
m
e
[s
]

(d)

Fig. 2.22. Malpasset dam break, France. a) Maximum water elevations at the gauge loca-
tions (S6-S14). b) Wave arrival times at the gauge locations (S6-S14). c) Wave front arrival
times at the three voltage transformers (1-3). d) CPU run times for different simulation
times.

faster, 0.3 per cent run time reduction for the first 2000 simulated seconds, than the
second-order scheme of Audusse et al. on a parallel implementation running on a
machine with a 4-core Intel i5-4960K CPU at 3.5 GHz. Our proposed scheme per-
forms better with increased simulation time because of the different reconstruction
and source term treatment in regions with small water depths and complex terrain
(Figure 2.22d).

2.3.6 Lobau

The Lobau is a floodplain east of Vienna, in Lower Austria, located at the left bank
of the Danube. It consists mostly of floodplain forests and is regularly flooded. We
simulate a flood that occured in January 2011 with a CUDA GPU implementa-
tion on a NVIDIA GeForce GTX 1070. The initial time is set to 13 January 2011,
1am, and the initial state comprises several still-water bodies and the Danube (Fig-
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Inflow

Outflow

Schönauer Schlitz
Gänsehaufentraverse

(a)

(b)

Fig. 2.23. Lobau historical flood, Austria. a) Bathymetry, initial water depths and location
of the 3 gauges PD.LP1, PD.LP16 and PD.LP18 and the inflow and outlet hydrographs at
the Danube. b) Flood extent and water depth after 2.5 days.

ure 2.23a). The water is flowing from the Danube into the Lobau only through a
small slot, the “Schönauer Schlitz”. The terrain is quite complex, featuring several
small channels, which render simulations challenging.
We apply an inflow BC upstream of Fischamend and an outflow BC downstream

of Fischamend (Figure 2.24a). The inflow BC is applied as a discharge BC (Pankratz
et al., 2007), and the otuflow BC is implemented as a flux boundary condition based
on water levels (Dutykh et al., 2011; Ghidaglia and Pascal, 2005). The simulation
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Fig. 2.24. Lobau historical flood, Austria. a) Discharge and water level time series used as
boundary conditions at the Danube. b) Simulated and measured water levels at the gauges.

domain is roughly 10×7 km2 large and the simulation cell size is set to 4 by 4 metres.
The bathymetry is given on a raster with 2 m resolution. The Manning roughness
coefficient n varies spatially between 0.03 and 0.13 m1/3/s. It is estimated based on
the land use. Hourly measured water levels are available at three locations, PD.LP1,
PD.LP16 and PD.LP18. They are displayed alongside the simulated data in Fig-
ure 2.24b. The simulated water extent after 2.5 days is displayed in Figure 2.23b.
The exact initial state is unknown and there is also an operated weir at the Gänse-
haufentraverse, which might explain the small differences between the observed and
the simulated flood waves at the gauge locations as it was modelled as a constant
bathymetry modification. Taking into account those uncertainties, the measured
water levels are predicted very well by the simulation.

2.4 Conclusion and future work

We derive and test a new formally second-order FVM scheme for the shallow water
equations. The scheme is well-balanced, as it preserves both the still water and lake
at rest steady states, and does not exhibit any oscillations. Instead of reconstructing
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the discharge slopes, we reconstruct the velocity slopes to obtain robust choices of
the wave speeds at wet-dry fronts, ensuring fast simulations. The scheme is par-
ticularly suited for implementations on GPUs, thus enabling faster than real-time
simulations for large domains.
A numerical convergence analysis demonstrates that the scheme is second-order

accurate. Validation against several benchmark tests, including multiple Riemann
problems, reveals that the scheme converges against the reference solutions in most
cases. Still, there are some scenarios where the solver does not produce satisfactory
results. The scheme is able to reproduce real-world flood events such as the Malpas-
set dam break and a historical river flood in Austria. On test cases with shallow
flow over abrupt topography, the new scheme achieves superior results than existing
schemes. These improvements are due to an improved HR procedure and a novel
adaptive second-order reconstruction strategy, which enables accurate resolution of
shallow flow down a bottom step. Moreover, our proposed scheme only requires
modification of a few lines of code when compared to the HR scheme of Audusse et
al. To sum up, the scheme is able to capture complex flows over complex terrains
accurately and efficiently as shown in the numerical test cases, all the more in the
presence of thin water layers.
The scheme can be applied to unstructured grids, as the source terms are eval-

uated on a subcell basis, only the slope reconstruction needs to be revisited. In
real world cases, the friction term plays an important role in predicting the correct
evolution of the flood extent. We are planning to improve our scheme by balancing
moving water in the presence of friction to gain better estimations of water levels
and wave arrival times. Further work is directed to combine the scheme with an
infiltration model for rainfall-runoff simulations.
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3 Locally relevant high-resolution hydro-
dynamic modeling of river floods at the
regional scale

The present chapter corresponds to the following scientific publication in its original
form:

A. Buttinger-Kreuzhuber, J. Waser, D. Cornel, Z. Horváth, A. Konev, M. H.
Wimmer, J. Komma, and G. Blöschl (2021). Locally Relevant High-Resolution Hy-
drodynamic Modeling of River Floods at the Regional Scale. Submitted to Water
Resources Research.

Abstract

This paper deals with the simulation of inundated areas for a region of 84,000 km2

from estimated flood discharges at a resolution of 2 m. We develop a modeling
framework that enables efficient parallel processing of the project region by split-
ting it into simulation tiles. For each simulation tile the framework automatically
calculates all input data and boundary conditions required for the hydraulic simula-
tion on-the-fly. A novel method is proposed that ensures regionally consistent flood
quantiles. Instead of simulating individual events, the framework simulates the flood
quantiles by adjusting streamflow at river nodes. The model accounts for local ef-
fects from buildings, culverts, levees, and retention basins. The two-dimensional full
shallow water equations are solved by a second-order accurate scheme for all river
reaches in Austria with catchment sizes over 10 km2, totalling to 33,380 km. Using
graphics processing units (GPUs) a single NVIDIA Titan RTX simulates a period
of 3 days for a tile with 50 million wet cells in less than 3 days. We find good agree-
ment between simulated and measured stage–discharge relationships at gauges. The
simulated flood hazard maps also compare well with local high-quality flood maps
by achieving critical success index scores of 0.6 to 0.79.

3.1 Introduction

Climate change has modified river floods in Europe (Blöschl et al., 2019) and other
parts of the world (Alfieri et al., 2017). In order to assist flood management agen-
cies, regional planners, and insurance companies in adapting to the changing hazard,
large-scale inundation maps associated with a given return period are needed. Re-
cently, extensive research has been carried out on continental and global inundation
mapping (Alfieri et al., 2014; Sampson et al., 2015; Dottori et al., 2016; Bates et
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al., 2021), but bridging the gap between continental scale and local models is still
challenging because of limitations regarding simulation accuracy and cost.
First, the accuracy of the hydraulic simulation is controlled, among other fac-

tors, by the numerical scheme and the resolution of the computational domain.
Resolutions of a few meters are required to resolve terrain features such as levees
and small channels. However, they require an efficient processing of a large amount
of possibly heterogeneous data for large areas. Traditionally, two-dimensional (2D)
hydrodynamic simulations were considered unviable for areas larger than 1000 km2

and resolutions at the meter scale (Teng et al., 2017) due to the high computational
costs, even though the value of a high resolution is clear (Ernst et al., 2010; Fewtrell
et al., 2011; Shustikova et al., 2019; Xia et al., 2019; Horváth et al., 2020). Various
approaches have therefore been proposed for speeding up simulations. One example
are linked 1D/2D models (Morales-Hernández et al., 2013; Falter et al., 2016; Hoch
et al., 2019; Rajib et al., 2020), but they have disadvantages related to complex data
preprocessing, implementation of the linking model and the need for a case-by-case
decision if the linked model is indeed significantly faster than a 2D model. Another
possibility consists of simplifying the physical processes, e. g. neglecting advection
or inertia terms (Neal et al., 2012). While in general this seems to be a computa-
tionally very efficient alternative, efficiencies may drop for urban regions (Costabile
et al., 2020) and for receding flows including wet-dry boundaries (Cozzolino et al.,
2019). Cozzolino et al. (2019) conclude that numerical issues in these problematic
regions may originate from simplifying the shallow water equations (SWEs) while
discretizations of the full SWEs are not subject to these limitations. For large-scale
river flooding the usage of a second-order scheme instead of its first-order coun-
terpart should be preferred as demonstrated in Horváth et al. (2020), even if the
runtimes of the second-order scheme are higher. A more promising approach to re-
duce simulation runtimes is the parallelization of the code. In particular the use
of graphics processing units (GPUs) may lead to a drastic reduction of runtimes
(Brodtkorb et al., 2012; Horváth et al., 2016; Vacondio et al., 2016; Echeverribar et
al., 2019) when compared to central processing units (CPUs). Simulations of flood
events on GPUs may be faster than realtime for domains of hundreds of km2 and
resolutions of a few meters (Xia et al., 2019; Morales-Hernández et al., 2021).
Second, an efficient approach to simulate large regions with numerous streams

is needed. Typically, a single processing unit in a computer cluster or a so-called
computational node is not able to accommodate the entire domain. Thus the entire
domain is split into subdomains with their sizes bound by the computational ca-
pability, e. g. memory, of the individual computational node. Common approaches
involve a decomposition of the domain into individual river reaches allowing only
small changes in flood discharges (Alfieri et al., 2014; Sampson et al., 2015; Bates et
al., 2021). At the boundary of the subdomain, streamflow hydrographs are usually
prescribed as inflow boundary conditions (BCs). The peaks of the streamflow hydro-
graphs typically correspond to the flood quantiles of the return period of interest.
For large simulation tiles, however, changes of the river flood quantiles along the
stream network within the subdomain can no longer be ignored because of lateral

44



3.1 Introduction

inflows including tributaries. Moreover, at confluences the downstream flood quan-
tile is not simply the sum of the upstream quantiles as the upstream flood quantiles
are typically not fully correlated in space.
Third, the accuracy of the inundated areas also depends on the accuracy of hydro-

logic and topographic input data, dense upstream streamflow boundary conditions
(Rajib et al., 2020), and detailed models to capture local flow dynamics. Local rele-
vance is thus not only achieved by high spatial resolution, but also by the inclusion
of small-scale local features. For example, underpasses usually appear closed in dig-
ital terrain models (DTMs), but may actually be open during a flood event. The
inclusion of levees and dams is required to ensure protected areas remain dry in the
inundation model (Bates et al., 2021; Wing et al., 2017). Also the way buildings are
treated has an effect on the small-scale dynamics of the water flow (Dottori et al.,
2013). Culverts and power plants are often included in local models, but usually
neglected in large-scale models. Inclusion of these detailed structures is needed for
locally relevant, regional flood simulation, especially in densely inhabited areas. The
accuracy of the models can be assessed by comparing the flood areas with carefully
designed local models (Wing et al., 2017), with remotely observed flood inundation
extents (Rajib et al., 2020), with observed high water marks (Wing et al., 2021),
and with insurance claims (Zischg et al., 2018).
Fourth, multiple steps are required for setting up the input data and the BCs

for hydraulic simulations. In a traditional modeling setup these steps are usually
carried out manually to allow for the handling of special cases which almost always
occur in real world applications. An automatic execution of the workflow requires
a consistent approach to process the steps, e. g. a dataflow consisting of linked
submodels that share data via input and output connections. Ideally, the whole
modular dataflow is controlled by one interactive automation framework (Sampson
et al., 2015) that allows for localized data corrections and automatically triggers
only local resimulations.
In this paper, we present a framework for simulating river floods with a resolu-

tion of 2 m for all of Austria (84,000 km2) as illustrated in Figure 3.1. This paper
goes beyond the existing literature by simulating a river network of 33,880 km with
a second-order scheme that discretizes the full SWEs. We demonstrate the effec-
tiveness of accelerated computational models to enhance the accuracy and local
relevance of the simulations. We propose a novel method to ensure consistent flood
quantiles across the entire river network of large simulation domains. Starting from
raw input data for an entire country, we describe an automated simulation setup
that derives BCs on-the-fly for the derivation of inundated areas. The proposed
model introduces streamflow hydrographs for all catchments greater than 10 km2

and accounts for levees, buildings, and culverts to provide locally relevant indunda-
tion maps. We also perform a combined validation against rating curves of stream
gauges and against detailed local flood maps.
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Fig. 3.1. Simulated rivers in Austria with decomposed simulation domains shown in the
west. The inset image shows the simulated maximum water depths on the 2 m grid. The
high resolution together with regionally consistent flood quantiles result in detailed, locally
relevant inundation maps.

3.2 Methods

3.2.1 Integrated setup as a Visdom dataflow

In order to obtain inundation maps from raw input data, a cascade of submodels
needs to be executed. A simplified version of the cascade of submodels, the so-
called modular dataflow, used in our approach is shown in Fig. 3.2. The raw input
data comprise land use, stream gauge records, the river network, river thalweg and
river bank lines, the DTM, and measured river bed profiles, as shown at the top of
Fig. 3.2.
For a given simulation domain, the dataflow then assembles all the necessary

data for the hydraulic simulation including the roughness, the boundary conditions
(BCs), the hydrologically enforced digital terrain model (DTM-H), and an initial
state of water levels. The roughness is estimated from land use in the floodplains
and from calibrated roughness at stream gauges. The BCs account for buildings and
hydraulic structures, such as culverts and power plants. Moreover, at the boundary
of the simulation domain and at river origins, the BCs prescribe flood hydrographs
statistically estimated based on discharge measurements, the river network topology,
and other information. This sub-dataflow is visualized on the left of Fig. 3.2.
The DTM-H represents a DTM that has been prepared for hydraulic modeling,

e. g. bridges have been cut-out and river beds have been burned in to allow free flow.
For most of the larger rivers in Austria bed measurements exist. Thus, we choose
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Fig. 3.2. Simplified dataflow of the flood inundation model in the proposed automation
framework.

a dual approach. Where measurements exist, the river bathymetries are used to
modify the DTM. Where no measurements exist, we estimate a trapezoidal profile
based on discharge, the river network topology, the river thalweg and the river bank
lines, and the DTM. This sub-dataflow is visualized on the right of Fig. 3.2.
The entire study region is split manually into rectangular tiles. There are no re-

strictions on the domain decomposition from the input data. Given any domain,
instationary BCs are specified automatically. The only step involving manual ma-
nipulations are corrections of data errors, e. g. of river bed measurements or the
coordinates of river thalweg and bank lines. The manual corrections and the domain
decomposition are stored as “actions” in separate layers which are later applied auto-
matically to the relevant data. For each of the tiles, BCs are automatically generated
and the computation of the required input data for the hydrodynamic simulation
is triggered. Initial water depths for the hydraulic simulation are obtained by sub-
tracting the DTM-H from the original DTM. The simulation then computes water
depth fields and velocity vector fields. Finally, at the bottom of the cascade, the
flood hazard maps are identified from the simulated maximum water depths.
Ideally, the execution of the dataflow should not involve any manual intervention.

Here we use the interactive automation framework Visdom (Waser et al., 2011;
Schindler et al., 2013), which determines the execution order by itself and executes
the cascade of submodels in a fully automated way. Moreover, Visdom features
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(a) (b)

Fig. 3.3. (a) River network around Innsbruck, Austria. The network consists of nodes (gray
circles) linked by the river. The nodes hold the hydrologic data, such as flood discharges.
(b) Detail of river thalweg lines and river bank lines.

an interactive visual representation of the dataflow consisting of several dozens of
modular units and hundreds of connections. In reality the dataflow is more complex
than the illustrative dataflow shown in Fig. 3.2. Visdom allows interactive changes to
the dataflow in an accessible graphical user interface throughout the entire project
period. Moreover, the graphical representation greatly facilitates the comprehension
of the dependencies between submodels.

3.2.2 Input data and pre-processing

Terrain model

The digital terrain model (DTM) covers all of Austria with a spatial resolution
of 1 m and is based on light detection and ranging (LIDAR) data. The vertical
precision of airborne laser scanning is at the order of a few centimeters (Pfeifer and
Briese, 2007; Kraus, 2011). However, the accuracy of the DTM, which is interpolated
from the DTM, also depends on other factors not fully represented by ALS data,
e. g. water bodies and vegetated river banks. The acquired point clouds completely
lack information about submerged topography, such as river beds, which has to be
added. Bridges and non-monotonic terrain levels along rivers are eliminated from
the DTM and the gaps are filled by adaptive river course interpolation between the
unobstructed parts to obtain the DTM-H (Wimmer et al., 2021).

River network

The digital river network consists of nodes and their directed connections. Each
node is allowed to only have one downstream node. Nodes are placed at conflu-
ences (Fig. 3.3a) and where stream discharges change significantly, for example
downstream of power plants. The nodes hold the hydrologic data, such as flood
discharges. In total, the river network consists of 19,479 nodes. The river thalweg
lines are automatically realigned with thalweg lines derived from the DTM. In cases
of doubt, manual checks and revisions are performed (Wimmer et al., 2021). Ad-
ditionally, a left and a right river bank line representing the extent of the water
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(a)
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Fig. 3.4. (a) Example validation of the estimated trapezoids (red) burned into the original
DTM (blue) against the measured bottom topography (grey) at the Inn river. Numbers are
length across the river (m) and level (m). (b) Comparison of the burn-in approach against
measured cross-sectional data along the Inn river and a tributary in terms of their relative
wet area deviation. Red indicates an overestimation of the computed wet areas, blue an
underestimation. The yellow lines indicate culverts, where the river bed was not burned in.

body in case of bank-full flow are generated (Fig. 3.3b). In total, 33,880 river km
are delineated representing all Austrian streams with a catchment size greater than
10 km2.

Streamflow boundary conditions

Streamflow boundary conditions are given by synthetic flood discharge hydrographs
of the form

Q(t) = QB + (QT −QB)

(
t

tP
exp

(
1− t

tP

))γ
, (3.1)

where QB is the mean annual discharge, QT is the peak discharge of the flood peak
for the associated return period, e. g. T = 100 years, and γ is set to 3 based on
hydrograph analyses in the study area. The time to peak parameter tP , QB and QT
are estimated by a statistical regionalization method based on Top-Kriging (Skøien
et al., 2006) following Merz et al. (2008).

River bed geometry

In Austria, 18.6% of all river km are covered by measured profile data, mostly at the
larger rivers. Following Bures et al. (2019) and Fleischmann et al. (2019), we adopt
a combined approach and construct the river bed from measured river bed profiles
and estimated trapezoidal cross-sections. The cross-sectional river width is based on
the distance between the left and right river bank lines. The depth is determined
by Manning’s equation under the assumption of a trapezoidal cross-section with a
bank slope of 60◦. The Manning’s roughness value is set to the same value as used
in the SWEs (see Section 3.2.2). The slope of the energy grade line is determined by
sampling the original DTM including water bodies along the river thalweg line. The
discharge consistent with the time of the DTM survey is assumed to be proportional
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to the mean annual discharge. A proportionality factor of 0.7 was backcalculated
from measured profile data. A factor smaller than 1 is in line with the practice of
conducting DTM surveys in autumn when stream flow is low in Austria (Merz et
al., 1999). Fig. 3.4a shows a comparison of estimated trapezoidal cross-sections and
measured river bed geometries for a reach of the Inn river and Fig. 3.4b shows the
associated relative wet area deviations defined as the ratios of estimated wet areas
over measured wet areas. For the major river flowing from west to east (the Inn
river) the bed is approximated very well. For the southern tributary the estimated
cross-section is slightly too deep.

Roughness

The spatially distributed roughness coefficient is compiled from different sources.
In the floodplains, a mapping from land use type to Manning roughness coefficients
is adopted from (Chow, 1959). Inside the river channel, we calibrate the roughness
with water level and discharge data from 420 stream gauges. A calibration with
the full 2D high-resolution model throughout Austria’s gauges requires an exces-
sive computational effort, so we choose to calibrate the roughness at each gauge
individually with Manning’s equation, in a similar way as in the derivation of the
trapezoidal cross-sections. The estimated roughness values are interpolated on the
river nodes with Top-Kriging. To reduce the influence of only locally valid high
roughness coefficients at some gauges, we average the estimated roughness values
with a default roughness value of 0.03 s/m1/3. The resulting Manning roughness
coefficients along all rivers are displayed in Fig. 3.5a. For a number of reaches (3350
river km), roughness coefficients are available from detailed local analyses carried
out in previous local studies. In these regions, they are averaged with the roughness
coefficients based on land use and the ones interpolated from the stream gauges. A
detail of the final spatially distributed roughness field is shown in Fig. 3.5b.

3.2.3 Automatic boundary conditions

Tiling

The flood modeling region of Austria is split into 182 rectangular simulation tiles
on the basis of the following criteria: The tiles are specified in such a way that
power plants are far enough away from an inflow, so that backwater effects are
fully captured. Cities and large confluences are sought to be in the middle of a
tile to avoid boundary effects. The tiles are required to overlap with each other to
capture all flooded areas originating from levee overtoppings several kilometres up-
or downstream in the case of large rivers. The entirety of all 182 simulation tiles
covers the complete Austrian terrority.
To balance these goals, the tiles are adjusted manually. The tile size is limited

by the available memory on the GPU to a total number of around 150 million wet
cells. Thus, given a resolution of 2 m, we limit the tiles to an area of 1000 km2,
assuming a maximum of 60 % wet cells. In contrast to tightly coupled distributed
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(1)

(2)

(a)

(1) (2)
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Fig. 3.5. (a) Roughness coefficients in the river channel interpolated from coefficients cal-
ibrated at the stream gauges to the river network with Top-Kriging. The photos give an
impression of the river characteristics of locations with (1) a high roughness of around
0.06 s/m1/3 for a natural stream in rocky hills and (2) a relatively low roughness of
0.02 s/m1/3 for a regulated stream in the lowlands. (b) The spatially distributed rough-
ness coefficients in the floodplains are based on land use. The roughness legend is valid
for both (a) and (b). Image Copyright: (1) https://commons.wikimedia.org/wiki/File:
Die_Lainsitz_im_Gabrielental_bei_Weitra_01_NDM_GD-103.jpg, CC BY-SA 3.0 AT. (2) Hy-
dro Burgenland, Heiligenbrunn / Strem. Permission granted.
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(a) (b)

Fig. 3.6. (a) Domain decomposition of Upper Austria into 24 tiles which are simulated in
parallel. The size of a tile is limited by the memory of a single GPU. The tiles labelled A, B,
C show slow simulation performance (Fig. 3.11). (b) Close-up of tile A with all BCs. Inflows
and outflows are displayed as wave icons. Culverts are indicated as dark yellow lines.

simulations, where state variables of the simulation tiles are shared at each time
step, here, the tiles are simulated completely independent of each other enabling
fast parallel processing. In a post-processing step, the simulated inundated areas
of each tile are then aggregated as specified in the last paragraph of Section 3.2.4,
resulting in a flood hazard map covering all of Austria. A detail of the tiling for
a subregion (Upper Austria) is shown in Fig. 3.6 along with the locations of the
automatically derived boundary conditions, including inflows and outflows shown
as wave icons.

Automatic inflows

Whenever a river enters a simulation tile or starts inside a simulation tile, upstream
BCs are derived (Fig. 3.7a). The flood hydrograph at the inflow positions is calcu-
lated by Eq. (3.1) from interpolated hydrologic parameters (Fig. 3.7b). In order to
account for the travel times of the flood waves, the hydrographs are shifted in time
by a recursive algorithm (Section 3.2.3). The inflow geometry is identified by con-
structing a cross-sectional line normal to the river line and intersecting it with the
river bank lines. This line is extended by a fixed factor on both sides and based on
trial and error a factor of two was chosen (Fig. 3.7c). At the rasterized cell interfaces
of the extended cross-sectional line, we prescribe a fraction of the discharge given by
the hydrograph. The fraction at each interface is assumed to be proportional to the
water depth ensuring a natural distribution of the discharge, as only neighboring
wet cells receive a water influx.

Adjustments for consistent quantiles

We propose a new method that allows maintaining the same return period of flood
peaks for the entire stream network. Traditionally, flood simulations are performed
for scenarios representing individual events in a mass-conserving way. In contrast,
in this study we perform simulations where the return period of the peak flows are
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Fig. 3.7. Automatically derived inflows for an arbitrarily chosen domain. (a) Inflows are
placed at the start of rivers and when streams enter the domain. (b) At each of the nine
inflows shown in (a), a flood hydrograph is calculated from the interpolated hydrologic
parameters of the upstream node. (c) At an inflow, the discharge is then distributed on the
rasterized inflow interfaces of the cross-sectional line normal to the river thalweg.

maintained across the entire stream network. In order to achieve this, water needs
to be added or removed in a precisely specified way. Small tributaries, which are not
explicitly resolved in the river network, contribute to an increase in flood discharges
along a river. In such a case, water is added along the river to ensure return periods
are maintained.
More importantly, confluences are considered in a similar fashion. Such a situation

is illustrated in Fig. 3.8a for the Inn–Sill confluence. In Fig. 3.8b the corresponding
hydrographs of the tributary before the confluence, as well as the hydrographs of the
main river before and after the confluences are plotted. The sum of the tributaries
peak discharge and the peak discharge of the main river upstream of the confluence
is generally greater than the peak discharge downstream of the confluence. This is
because of the probability of a joint occurence of floods at both streams is usually
significantly smaller than 1 (Bender et al., 2016; Guse et al., 2020). For a confluence
node, the adjustment is given by the difference between the sum of the upstream
hydrographs and the downstream hydrograph associated with that node. The re-
sulting difference hydrograph at the confluence is negative around the peak time
(Fig. 3.8b). Therefore, at a confluence typically water needs to be removed from the
hydraulic simulation to ensure the same return period. This adjustment is performed
at rasterized adjustment polygons related to the river geometry (indicated in green
in Fig. 3.8a). In these cells, a specific source term is introduced in the SWEs, which
applies the adjustment to the wet cells in the polygon.
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Fig. 3.8. Hydrographs at the Inn–Sill confluence for a 100-year flood. (a) A schematic
illustration of the confluence with an inset image of the real-world situation. (b) The hy-
drographs at the confluence with the hydrograph of the tributary shown in violet. The
adjustment is made at specific cells (indicated in green in (a)) via a source term.

Temporal relationship between streamflow hydrographs

At each node, a hydrograph is specified by the statistical regionalisation described
in Section 3.2.2. For aligning the hydrographs in time in a consistent way, we adopt
the following procedure.
First, we need to approximate the wave travel time in the two-dimensional hy-

draulic simulation of a flood hydrograph from a river network node to its downstream
neighbor. We estimate the travel time with a uniform wave approximation and the
velocity obtained from Manning’s law using the median water depth, the average
roughness and slope along the reach as well as the river width, assuming the wave
celerity is not vastly different from the flow velocity.
Second, as far as the timing is concerned, we assume that flood waves at con-

fluences peak simultaneously. This assumption ensures that the differences in the
discharge time series are smaller in magnitude than for non-synchronous flood peaks,
which improves numerical stability. We illustrate the effects of these two assump-
tions in Fig. 3.9a and b, respectively, on a small domain shown in Fig. 3.9c.
Third, if a simulation tile is divisible into multiple smaller independent river

networks, the peak time at the outflows is set to occur at the same time. This rule
increases simulation performance as it ensures fast simulations until the common
flood peak, as the simulation is faster before the flood peak than after the flood
peak due to the comparably smaller percentage of wet areas.
Based on the above assumptions, a recursive algorithm determines all the time

shifts needed for the adjustment and inflow hydrographs. The required simulation
time of a tile is controlled by the node with the maximum hydrograph duration. The
hydrograph duration is determined by the time to peak parameter and the travel
time needed for the wave at that node to leave the domain. The required simulation
durations range from 1.7 days in steep terrain to 31 days in tiles with lakes and
large rivers.
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Fig. 3.9. (a) Streamflow hydrographs at the river network nodes of a single river reach,
the Zwieselbach in Tyrol. The peaks are slightly shifted by time lags computed from an
uniform wave approximation. (b) Streamflow hydrographs at the nodes of the main river,
the Archbach, and a tributary, the Zwieselbach. At the confluence the peaks are exactly
aligned. The river with the shorter hydrograph duration, in this case the Zwieselbach, is
shifted towards the river with the longer hydrograph duration. (c) Associated nodes and
domain.

Fig. 3.10. Outflow rating curve automatically derived from the water level slope along
the river thalweg line, the roughness along the river and along the outflow cross section.
Simulated outflow discharges are mapped to a water level at every time step.

Rating curve outflows

Whenever a river leaves a tile, outflow BCs are automatically derived. The geometric
setup is similar to the inflows, however we extend the cross-sectional line only by
20% at each side in contrast to the 100% for inflows. We specify an absorbing BC
at the domain boundary allowing water to freely leave the domain. Thus, if water
bypasses the specified outflow interfaces, it can leave the domain at the boundary. To
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ensure numerical stability, we prescribe a dynamic water level BC at the outflows.
Specifically, we employ a rating curve to dynamically map the currently simulated
discharge that leaves the domain through this outflow BC to the corresponding water
level (Fig. 3.10). Assuming uniform flow, we use Manning’s equation to derive the
rating curve. We emphasize that here dynamic means that the water level time series
is not a priori set from recorded gauge data (Horváth et al., 2020), but computed
at every time step via the rating curve. This dynamic outflow condition ensures a
correct specification of the water level accounting for changes of the flood wave inside
the simulation domain, such as peak discharge reduction due to dike overtoppings
or floodplain spills, and avoids a possibly incorrect propagation of a priori converted
peak water levels at the downstream boundaries into the simulation domain.

Buildings, culverts and power plants

Given the resolution of 2 m, all buildings in the domain are rasterized as wall cells
where no water can enter. In urban regions, culverts and sewers may affect the
inundation area. While the representation of urban sewer systems is beyond the
scope of this paper, we do use a simple culvert model supporting culverts without
bifurcations that are fed by streams and aligned with river thalweg lines. The cross-
sectional geometry is automatically derived from the river thalweg and river bank
lines at the culvert ends. The discharge is computed taking into account the pressure
heads and the cross-sectional geometry at the in- and outlet. In total, there are 1475
culverts.
Additionally, run-of-river and high-head power plants are considered. For large

rivers, the weirs of run-of-river power plants that are opened during floods are
represented in the DTM-H. The retention effects of high-head power plants are sim-
ulated by specifying water level-discharge relationships of the outlets. Downstream
of the reservoirs, hydrographs are set as upstream BCs analogously to the inflows
in Section 3.2.3.

3.2.4 Hydrodynamic simulation

The hydrodynamic simulation engine solves the full two-dimensional shallow water
equations (SWEs)

∂tU + ∂xF (U) + ∂yG (U) = Sb (U, b) + Sf (U) + Sc, (3.2)

where U = [h, hu, hv]T is the vector of conserved variables and F and G are the
flux functions

F =

 hu

hu2 + 1
2gh

2

huv

 , G =

 hv

huv

hv2 + 1
2gh

2

 . (3.3)
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The bed slope term Sb models the fluid’s acceleration due to gravitational forces,

Sb =

 0

−gh∂xb
−gh∂yb

 . (3.4)

Flow resistance is modeled by the friction term Sf ,

Sf =

 0

−gn2h−1/3u
√
u2 + v2

−gn2h−1/3v
√
u2 + v2

 . (3.5)

In these definitions, h represents the water height, hu is the discharge along the
x-axis, hv is the discharge along the y-axis representing the conserved variables.
Furthermore, u and v are the average flow velocities in x and y-direction respec-
tively, g is the gravitational constant, and b is the bathymetry (assumed to be time-
independent), and n is the Manning roughness coefficient. The source and sink term
Sc is only active in adjustment cells with prescribed positive or negative discharges
(Section 3.2.3).
For the spatial discretization of the SWEs, the finite volume method (FVM)

is used on a uniform Cartesian grid of 2 m. We employ a second-order accurate
scheme (Buttinger-Kreuzhuber et al., 2019). The bed source term is discretized
to preserve still-water steady states, i. e. the scheme is well-balanced. The scheme
properly handles flow states across bed discontinuities and achieves second-order
accuracy in space through a minmod limiter. The minmod-parameter is set to one,
in order to ensure robust and fast simulations (Horváth et al., 2020). At wet-dry
boundaries only the velocities are set to zero below a cut-off water depth threshold,
set to 0.0001 m, thus ensuring mass conservation up to floating-point precision. The
friction source term Sf is evaluated in a semi-implicit manner by splitting it into a
coefficient-wise product of an implicitly evaluated state and an explicitly evaluated
friction term (Brodtkorb et al., 2012). For the second-order time integration we use
Heun’s method (Buttinger-Kreuzhuber et al., 2019).
The FVM enables straightforward parallelization on regular grids. The scheme is

implemented on GPUs for substantially faster runtimes relative to CPUs. A sim-
ulation tile is split into thousands of blocks consisting of 14 by 14 cells. When a
block is dry and not at risk of flooding, it is excluded from the hydraulic simulation.
Therefore, only wet blocks have an impact on the simulation runtime. The imple-
mentation is heavily optimized and relies on Kepler shuffles for fast processing of
the numerical stencil (Horváth et al., 2016). Well-constructed datastructures con-
sisting of mostly single-precision floats guarantee that the GPU achieves maximum
performance. We use 10 NVIDIA Titan RTX GPUs in parallel, each equipped with
24 GB of video memory. For the second-order accurate scheme, each GPU is able
to process a maximum of approximately 150 million wet cells. The exact number
depends on the distribution of the wet cells, input data size of the BCs and other
minor factors.
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Table 3.1. Wet areas, average model runtimes, and average simulated time by Austria’s
regions for a 100-year flood. For each region, the model runtimes are given in the average
values per km2 of simulated wet area (per 250,000 wet cells).

Region Sim. Wet Area [km2] Runtime [hours/km2] Simulated Time [days]

Carinthia 372.1 2.40 7.80
Lower Austria 1463.7 1.80 7.24
Salzburg 209.4 1.92 5.93
Styria 636.9 1.28 4.71
Tyrol and Vorarlberg 307.5 1.79 4.44
Upper Austria 541.9 2.51 9.87

Austria 3531.5 1.88 6.54

The tiles specified in Section 3.2.3 are processed in parallel and independent of
each other. Each GPU processes one tile and does not need to exchange data with
another simulation. For a cluster of 10 GPUs, 10 tiles are processed in parallel.
Whenever a GPU is ready for work, after finishing its previous job, the next tile
in the queue is assigned to it automatically by the dataflow system (Section 3.2.1).
Once all tiles are processed they are aggregated with a weighted interpolation oper-
ator with weights depending on the distance from the tile boundary. This results in
a unique maximum water depth for every location in Austria. Finally, polygons of
the inundated areas are delineated from the cells where the maximum water depth
exceeds 5 cm.

3.3 Results and discussion

3.3.1 Model runtimes

An overview of the average model runtimes per km2 of simulated wet area and the
average simulated times for the regions of Austria is given in Table 3.1. The model
runtime is defined as the cumulative wall clock time that a single GPU needs to
process the specified area. The simulated time specifies the duration of the simulated
timespan which is given by the duration of the streamflow hydrographs inside the
domain and is larger in regions with lakes, e. g. in Carinthia and Upper Austria. For a
100-year flood, the accelerated computational model ensures that a tile is processed
with a runtime of a quarter of the maximum hydrograph duration in average. With
a cluster of 10 GPUs the actual model runtime is approximately one tenth of the
runtime specified in Table 3.1 resulting in an overall runtime of not even a month
for all of Austria.
For the tiles of Upper Austria, which are shown in Fig. 3.6, the model runtimes

per tile (for one GPU) are displayed in Fig. 3.11a. Tiles that are covered by large
inundated areas require longer runtimes, as can be seen by comparing tiles A, B and
C in Fig. 3.11b. In tile A, more than 20 million cells are wet, i. e. an area of 80 km2

is flooded. Only tiles with large lakes differ from the general pattern, e. g. in tile C
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Fig. 3.11. (a) Model runtimes for each of the 25 tiles of Upper Austria for a 100-year flood.
Simulation of a tile is performed on a single GPU. (b) Depending on the number of cells
and the wave speeds inside these tiles, the simulation of a single tile is between real time
and 20 times faster than realtime. The number of wet cells in a tile ranges between 1 and
20 million.

Fig. 3.12. Locations of the stations in Tyrol.

the lake Attersee is responsible for a wet area of 46 km2. The ratio between model
runtime and simulated time in Fig. 3.11b does not not show any kinks indicating
that no high speeds occur which shows the robustness of the underlying scheme. As
a side note, doubling the resolution increases the runtime by a factor of 5 to 7 times
(Horváth et al., 2020). The factor is larger than 4 because of the shorter timestep
according to the Courant–Friedrichs–Lewy (CFL) condition.

3.3.2 Comparison with measured rating curves

To validate the accuracy of the simulations, we compare them with measured rating
curves at eight stream gauges along the Inn river (locations in Fig. 3.12; rating curves
in Fig. 3.13), where measured river bed profiles exist. Very good agreement is found
for the top six gauges and slightly poorer agreement is found for Jenbach-Rotholz
and Brixlegg. The rating curve of Jenbach-Rotholz shows a bias of around 30 cm
which may be due to an inaccurate representation of the measured river profiles in
the neighborhood of the gauge. Additional surveys would be needed to shed light
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Fig. 3.13. Simulated (red lines) and observed (gray points) discharges and water levels
at eight Inn gauges in Tyrol. The reference measurements are monthly maxima collected
between 2010 and 2017. Catchment areas of the gauges range from 2162 to 8504 km2.
Station names and numbers are given in the panels.
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on this issue, but this is beyond the scope of this article. At Brixlegg, simulated
water levels tend to deviate from measured water levels for high discharges. In this
case, an inaccurate representation of the flow at several bridges downstream of the
gauge explains the low simulated water levels at high flows, since bridges are not
explicitly considered in the simulations. Another reason may be an underestimation
of the channel roughness which might be addressed by local recalibration.

3.3.3 Comparison with local flood hazard maps

For a spatially distributed validation, we compare the simulated inundated areas
against local flood hazard zones, which have been developed in local studies for
individual river reaches and approved by the respective authorities. Both the local
hazard polygons used as reference (R) and the simulated flood zones are sampled
on a 8 by 8 m2 grid. This results in two possible states for each cell in the reference
benchmark data, either wet (R1) or dry (R0), if the reference polygons covers more
or less than half of the respective grid cell. In the model M , a cell is considered wet
(M1) if a threshold of 5 cm is exceeded at the cell center, otherwise it is dry (M0).
Four performance measures are used. The first is the hit rate (HTR), defined by the
number of cells that are wet in both the model and the reference over the number
of wet cells in the reference data, i. e.

HTR =
|M1R1|
|R1|

∈ [0, 1]. (3.6)

The hit rate provides information whether the model can correctly replicate the
wet cells, ignoring however if the model overpredicts flood extents. The false alarm
ratio (FAR) accounts for the overprediction of the flood extent as it is directly
proportional to the number of false alarms, i. e. cells wet in the model but dry in
the reference data.

FAR =
|M1R0|
|M1|

∈ [0, 1]. (3.7)

A FAR equal to zero indicates that there are no false alarms. The critical success
index (CSI) provides a measure of fit by relating the correctly predicted wet cells
to the total number of wet cells in either model or reference or both, i. e.

CSI =
|M1R1|

|M1R1 +M0R1 +M1R0|
∈ [0, 1]. (3.8)

A CSI of one describes a perfect match of the model flood extents and the reference
data. Finally, the error bias (EBS) shows if a model tends towards overestimating
(EBS greater than one) or underestimating (EBS smaller than one) flood extents.
The error bias describes the number of false alarms over the number of cells that
the model missed, i. e.

EBS =
|M1R0|
|M0R1|

∈ [0,∞]. (3.9)
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Table 3.2. Performance metrics for Austria’s regions for a 100-year flood. The metrics
include the critical success index (CSI), hit rate (HTR), false alarm ratio (FAR), error bias
(EBS), the area AM1R1 that is wet in both the model and the reference, and the maximum
and median of the catchment areas AC .

Region CSI HTR FAR EBS AR1M1 Max. AC Median AC

[km2] [km2] [km2]

Carinthia 0.71 0.84 0.18 1.13 113.8 7065.8 205.2
Lower Austria 0.68 0.88 0.25 2.48 630.7 130804.6 123.7
Salzburg 0.60 0.71 0.21 0.64 54.4 6124.1 181.0
Styria 0.73 0.81 0.12 0.55 380.5 9829.6 95.3
Tyrol & Vorarlberg 0.61 0.76 0.23 0.95 118.0 9531.1 96.2
Upper Austria 0.72 0.81 0.14 0.66 279.3 92515.6 74.7

Not all simulated rivers are covered by the reference flood hazard maps, thus
a buffer zone around rivers covered in the reference flood polygons is computed.
The buffer zone width wb depends on the catchment area Ac, i. e. wb = 200 +
15
√
Ac. Furthermore, lakes and buildings are excluded in the buffer zone for a fair

comparison. Model evaluation was subsequently restricted to this buffer zone.
For Austria, a critical success index (CSI) score of 0.69 and a hit rate of 83

% is achieved. In Table 3.2 these performance measures are evaluated per region.
The CSI ranges between 0.61 and 0.74, the highest value is achieved in Styria, the
lowest in Salzburg. The hit rate ranges between 0.71 and 0.88, the highest rate
is achieved in Lower Austria. The false alarm ratio (FAR) ranges between 0.11 in
Styria and 0.24 in Lower Austria. In Lower Austria, hit rate, FAR, and error bias
are high due to a modest overestimation of inundated areas in the large floodplains
along the Danube and its tributaries. In Styria, the good fit may be explained by
the fact that rivers flow mostly through natural floodplains in hilly lowlands or
alpine valleys. In Carinthia, Tyrol and Salzburg the floodplains lie in clearly defined
alpine valleys where the hinterland is often protected by highways used as levees.
These levees frequently have small openings for tributaries or streets, which can be
closed if a flood only occurs at the main river, and are therefore mostly considered
closed in the reference flood maps. However, in the proposed regional approach
used here, they remain open to facilitate free flow of the tributary. Thus, model
performance is worse in alpine valleys where rivers are constrained by highways
used as levees, e. g. Salzburg and Tyrol, than in regions where most levees do not
have a secondary purpose, e. g. in Lower and Upper Austria. These findings suggest
that accurate hydrodynamic modeling of rivers constrained by complex defensive
protection measures is more involved than that of rivers flowing through natural
floodplains.
For a historical reach-scale scenario with manual calibration of roughness pa-

rameters, a CSI value of 0.89 against observed high water marks was reported in
Echeverribar et al. (2019). Aronica et al. (2002) report CSI values of 0.7 to 0.85 for
the best pick of ensemble scenarios. Thus, CSI values of 0.9 seem to represent an
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upper limit for local models. For two continental-scale models (Alfieri et al., 2014;
Wing et al., 2017), CSI values are in the range of 0.44 to 0.65, and 0.51 to 0.9,
respectively. However, comparisons across regions need to be considered in light of
the complexity of the floodplain topography, e. g. if the floodplain is defended or
developed, as it has an effect on the model performance (Wing et al., 2017).
Fig. 3.14a shows the CSI values aggregated on a grid with 2.5 × 2.5 km2 cells for

Tyrol. Illustrative examples of the inundated areas of the model and the reference
dataset are shown in Fig. 3.14b–d. In the following, we give reasons for the differences
of the two data sets in order of their importance.
First, the inundated areas of the reference flood hazard maps are constructed

for single reaches using simulations that are mass preserving. Typically, in these
simulations the discharge of the main stream corresponds to that of the return
period of the scenario, while the discharges of the tributary are reduced to the extent
to make the confluences mass conserving. Normally, discharges of the tributaries
correspond to return periods of 3 to 5 years, while the main stream maintains a
100-year flood quantile. The reference areas thus describe a realization of a single
possible event. In contrast, the proposed model represents a regional pattern of the
ensemble of multiple hypothetical events for a water level consistent with a 100-year
flood quantile everywhere (Fig. 3.8a). Thus, in our simulations inundated areas tend
to be larger upstream of confluences, and smaller downstream than in the reference
map. This is particularly apparent in Fig. 3.14b,c.
Second, rivers exist that are included in the dataset used here but are not included

in the reference dataset and vice versa. Modeled inundated areas of tributaries are
sometimes inside the buffer zone even if they are not included in the reference
flood hazard maps. In this case, flooding of small rivers in the present model are
incorrectly treated as false alarms.
Third, the DTMs are different as the data source and date of the ALS campaigns

are not the same. The reference flood hazard maps include underpasses which are
considered closed in the reference but open in our model and vice versa, thus causing
differences in the flooded areas as is shown in Fig. 3.14d. In general, levees are
resolved and protected areas remain dry (Fig. 3.14b). In rare cases, mobile walls or
concrete walls with a width smaller than 2 m, which are resolved in the reference
data set but not here, cause an overestimation of wet areas. In general, uncertainties
are larger in urban areas, which is also in line with the findings of Dottori et al.
(2013), Wing et al. (2017), and Annis et al. (2020).
As the reference flood hazard maps are also created from a shallow water model

in addition to comparisons with observed flood cases, and some of the data are
shared between the models (e. g. river bed), this test is not fully independent and
may not reveal all the biases. A validation against remotely observed inundation
patterns, observed flood marks or against validation claims of individual inundated
buildings could help to further improve the modeling approach (Wing et al., 2021;
Zischg et al., 2018).
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Fig. 3.14. (a) Critical success index (CSI) scores in Tyrol aggregated on a 2.5 by 2.5 km2

grid. (b) Both models resolve levees (1) at the Inn around Telfs, but the adopted regional
model causes larger inundation areas for the northern tributaries (2). (c) In Sankt Johann,
flooded areas deviate due to the proposed regional modeling approach including the adjust-
ments. Upstream of the confluence the flood quantiles are higher than those of the local
reference dataset resulting in larger modeled indundation areas (3),(4). (d) At the Inn in
Schwaz an underpass is included in the reference dataset, but not in the DTM used here
(5) and vice-versa (6).
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3.4 Discussion

Previous large-scale flood hazard simulations have often used coupled 1D/2D models
(Falter et al., 2016) or resolutions too coarse to explicitly resolve fine structures, e. g.
levees and small rivers, in the terrain model (Alfieri et al., 2014; Wing et al., 2017).
A resolution of 2 m as adopted in this study allows for a direct incorporation of such
terrain features. As a consequence, additional techniques, such as subgrid simulation
or downsampling algorithms (Neal et al., 2012; Schumann et al., 2014), are not
required. Due to the high resolution openings in levees, e. g. street underpasses,
can be represented explicitly. This opens up new questions regarding the modeling
of underpasses since, without additional information, it is not clear from the DTM
whether they will be closed or not in an emergency case. Overall, the direct inclusion
of levees and buildings enables a detailed representation of flow in urban regions.
The high detail also allows for the direct estimation of building damage and other
socio-economic impacts (Ernst et al., 2010).
In these types of large-scale applications, the storage capacities needed for the

entire domain almost always exceeds what can be accomodated on a single com-
putational device, so some tiling is always necessary. One option is to couple the
subdomains through overlapping halo and ghost cells and perform tightly coupled
simulations where the state variables are exchanged at every simulation time step
(Xia et al., 2019; Morales-Hernández et al., 2021). For example Xia et al. (2019) dis-
tributed one simulation run for a catchment with a size of 2500 km2 and a resolution
of 5 m (i. e. 100 million cells) on several GPUs. However, this tightly coupled ap-
proach tends to increase runtimes as the global timestep is restricted by the highest
numerical speed in all the subdomains due to the CFL condition. This introduces
a synchronisation barrier at every time step of the hydraulic simulation. Moreover,
when simulating multiple non-overlapping catchments, every catchment needs to be
simulated for the maximum flood duration of the entire region. Thus, the runtime
tends to increase even further with the number of subdomains. In light of these
issues, we favor the proposed less tightly coupled approach where the domain is
subdivided into tiles, each of which is simulated independently and in parallel on
one GPU. Consequently, differences emerge in the simulated wet areas where the
tiles overlap. Occasionally, they are noticeable, for example if the BCs are poorly
estimated, but in general the differences in the water depths are in the order of
centimeters and therefore not problematic.
In the proposed model the region of interest is tesselated into rectangular tiles

rather than into individual river reaches, as for example in Sampson et al. (2015),
Wing et al. (2017), and Bates et al. (2021). The proposed approach allows the
simulation of flood discharges associated with a consistent return period across
all river reaches. As a consequence the simulated flood areas do not correspond
to a possible event, but rather represent the combined result of a multitude of
events. We consider this an attractive alternative to long-term stochastic simulations
(e. g. (Falter et al., 2015)), because of the much faster runtimes. The application
of a probabilistic sampling approach (e. g. with copulas (Bender et al., 2016)) to
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numerous confluences in ungauged catchments requires thousands of simulations
which would render the spatial resolution adopted here unfeasible.

3.5 Conclusion and perspectives

In this paper, we present a modeling framework for large-scale hydraulic simulations
of river floods. With a focus on accuracy and simulation speed, we employ a second-
order finite-volume scheme that discretizes the full, transient shallow water equa-
tions (Buttinger-Kreuzhuber et al., 2019) implemented on graphics processing units
(GPUs). Inundated areas are simulated for the whole of Austria (84000 km2) with
quadratic cells of 2×2 m2. We achieve local relevance through the number of included
streams and through the high resolution of the DTM and the simulation grid, which
allows explicit representation of dams, buildings and small rivers. Inflow boundary
conditions (BCs) are automatically prescribed from hydrologic data. Hydraulic sub-
models of high-head power plants and culverts provide an accurate description of
local effects. Dynamic outflow BCs account for instationary two-dimensional effects,
e. g. from retention basins.
In order to efficiently map the inundated areas, we propose a workload distri-

bution based on simulation tiles that allows adaptation to the capabilities of the
individual computational devices. The approach allows for arbitrarily placed tiles
with a domain size not constrained by hydrological data, but only bound by current
hardware limitations. For tiles with sizes of around 600 km2, the GPU-accelerated
robust hydraulic engine ensures fast hydrodynamic simulations. For all of Austria,
182 tiles are processed in parallel on a distributed setup of 10 GPUs. The effective
runtime for the entire region of Austria is less than a month for a 100-year flood
simulation, which results in 3532 km2 of inundated areas or 883 million wet pixels.
By providing additional adjustment source terms to the hydraulic engine, a novel

approach to maintain consistent flood return periods across the river network is
presented. With these adjustments, we are able to simulate all rivers in a tile in one
run. The adjustments violate mass conservation at confluences, thus results deviate
from conventional mass-conserving flood hazard maps. This approach provides an
efficient way to map inundated areas at confluences without the need for ensemble
simulations.
The automation framework Visdom (Waser et al., 2011) controls the complete

dataflow including the automated generation of the inputs to the hydraulic simu-
lations, their execution, and the post-processing without the need for manual in-
terventions. Manual work is only required for a few specific tasks, e. g. tiling of the
region of interest or providing data corrections. A flexible setup ensures that changes
and manual corrections are automatically integrated and propagated forward to the
simulations.
We regard the presented model as a prototype for a new standard that brings

local relevance to large-scale high resolution modeling. The simulated rating curves
show good agreement at stream gauges when compared with measured rating curves.
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The model delivers flood hazard maps comparable to flood hazard maps created in
local studies with a critical success index (CSI) score of 0.69 and a hit rate of 83 %
across Austria. The individual CSI scores across Austria’s regions range from 0.61
to 0.74. Deviations from local reference maps emerge due to the consistent flood
return periods or due to differences in the DTM, e. g. open underpasses. In future
work, uncertainties in the model cascade and the effects of climate change could
be addressed. One possibility would be ensembles of simulations that investigate
changing streamflow conditions from climate projections.
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4 An integrated GPU-accelerated model-
ing framework for high-resolution sim-
ulations of rural and urban flash floods

The present chapter corresponds to the following scientific publication in its original
form:

A. Buttinger-Kreuzhuber, A. Konev, Z. Horváth, G. Blöschl, and J. Waser
(2021). An integrated GPU-accelerated modeling framework for high-resolution sim-
ulations of rural and urban flash floods. To be submitted to Environmental Mod-
elling & Software.

Abstract

This paper presents an integrated modeling framework aiming at accurate predic-
tions of flash flood hazard from rainfall in rural and urban settings. The spatially
distributed runoff model integrates an infiltration component based on the Green–
Ampt equation, an interception component, and a surface flow routing component.
The surface flow is discretized either by a first-order or by a second-order accurate
scheme solving the full shallow water equations. For urban systems the model is cou-
pled with the Storm Water Management Model (SWMM). The model is validated
and tested on laboratory, rural and urban scenarios. In terms of the workload–
accuracy tradeoff, the first-order scheme outperforms its second-order counterpart.
A GPU implementation of the runoff model yields speedups of 1000 times compared
to a sequential CPU implementation. The GPU-accelerated modeling framework
simulates flash floods at resolutions of 1 m for areas up to 200 km2 in realtime.

4.1 Introduction

Floods are increasing in many parts of the world due to climate and land use change
(Chen et al., 2018; Blöschl et al., 2019) causing disproportionally high damage in
urban regions (Jongman, 2018). To mitigate future flood damage, detailed models
that assist in assessing the flood hazard spatially are crucial (Rosenzweig et al.,
2021). In contrast to lumped models, spatially distributed models allow for an ex-
plicit representation of spatial variations and inhomogeneities in input data, such
as topography, vegetation, soil characteristics, and urban features. Notwithstanding
scale issues (Grayson and Blöschl, 2001), there is a lot of value in spatially dis-
tributed high-resolution modeling for management purposes. However, higher reso-
lutions lead to slower simulations. In addition, ensemble simulations that quantify
the uncertainty of the predictions and provide insights into the effects of parameter
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variation increase the computational burden even further. Thus, the challenge is to
advance the capabilities of numerical modeling while balancing simulation perfor-
mance and model accuracy.
To accurately represent the topography, the resolution of the simulation grid

should be chosen accordingly. As a rule of thumb, terrain features should be cov-
ered by at least 3 cells to be represented explicitly (Gallegos et al., 2009; Fewtrell
et al., 2011; Horváth et al., 2020). For urban areas, a resolution of 2 m or less is con-
sidered necessary to accurately represent buildings, curbstones, and other features
(Fewtrell et al., 2011; Dottori et al., 2013; Xing et al., 2018). Moreover, simulations
at submeter resolutions are useful for assessing the benefits of small-scale alteration
of street topography for flood risk management purposes at low costs (Almeida et
al., 2016).
The shallow water equations (SWEs) are typically used for describing surface flow.

Due to the Courant–Friedrichs–Lewy (CFL) condition, a high spatial resolution re-
quires a fine temporal discretization. Therefore, the total amount of computational
work increases and in turn slows down simulation runs. To accelerate the simu-
lations, one possibility is to simplify the shallow water model, for example, using
diffusive wave (sometimes also called zero-inertia) or kinematic wave approximations
(Neal et al., 2012; Le et al., 2015; Fry and Maxwell, 2018; Yang et al., 2020). For ur-
ban regions, the full or dynamic SWEs in combination with shock capturing schemes
are able to reproduce observed hydraulic behavior and velocities more accurately
than simplified models (Kvočka et al., 2015; Costabile et al., 2020). Cozzolino et al.
(2019) conclude that the preferred model for floodplain simulations should be the
full 2D SWEs as simplified models often suffer from a poor representation of receding
flows and bed discontinuities. Still, issues such as wetting and drying over complex
terrain pose a numerical challenge and constitute an active area of research (Chen
and Noelle, 2017; Xia et al., 2017; Buttinger-Kreuzhuber et al., 2019). If not treated
properly, numerical instabilities occur and lead to slow simulations. The full SWE
offer a model to simulate both complex open channel hydrodynamics and overland
flow processes (Costabile et al., 2013; Fernández-Pato et al., 2016), in particular
at high resolutions (Caviedes-Voullième et al., 2020). Recent studies (Costabile et
al., 2017; Aricò and Nasello, 2018; Caviedes-Voullième et al., 2020) point out that
solvers for the full SWEs might in fact require less computational time than their
zero-inertia counterparts. A more promising way to achieve computational speedups
is the execution in a massively parallel fashion on supercomputers (Noh et al., 2018;
Kuffour et al., 2020) or on graphics processing units (GPUs) (Lacasta et al., 2015;
Le et al., 2015; Xing et al., 2018; Xia et al., 2019; Morales-Hernández et al., 2021).
Cutting-edge flash flood models are on the verge of handling resolutions of 5 m for
large regions of up to 2500 km2, or, 100 million cells (Xia et al., 2019). Traditionally,
cities are split into multiple smaller simulation regions that tend to underestimate
inundation (Xing et al., 2018). Thus, high-resolution simulations at large scales, e. g.
spanning entire cities, are needed.
A variety of infiltration models exist, including the empirical Soil Conservation

Service (SCS) curve number method (Chow et al., 1988; Aureli et al., 2020), the
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empirical Horton model (Fernández-Pato et al., 2016; Fernández-Pato and García-
Navarro, 2018), the semi-empirical Green–Ampt model (Fiedler and Ramirez, 2000;
Simons et al., 2013; Delestre et al., 2017; Fernández-Pato et al., 2016), and more
complex models such as Richards equation (Maxwell, 2013; Le et al., 2015; Kuffour et
al., 2020) although capturing macropore flow (Zehe et al., 2007) remains a challenge.
The model’s ability to capture the local effects of green infrastructure (GI), such
as green roofs, rain gardens, or bioswales, is important in urban flood resilience
planning (Berland et al., 2017; Fry and Maxwell, 2018; Rosenzweig et al., 2021).
For urban flood hazard modeling, the flow in sewer systems and its interaction with
the overland flow may be relevant. The Storm Water Management Model (SWMM)
is an established tool for routing stormwater in sewer systems. It is developed by
the Environmental Protection Agency (EPA) as an open-source software package
(Rossman, 2017). A widely used approach to bidirectionally couple urban drainage
networks to overland flow are dual drainage models (Leandro and Martins, 2016;
Yang et al., 2020; Li et al., 2020; Rosenzweig et al., 2021). The interaction terms
are commonly based on the water level differences between the sewer nodes and
the surface water (Djordjević et al., 2005; Chen et al., 2016; Rubinato et al., 2017;
Fernández-Pato and García-Navarro, 2018).
In this paper, we present a coupled modeling framework for fast simulations in

urban and rural settings. The framework includes several components considered rel-
evant in rainfall–runoff modeling and flash flood hazard assessment, that is, spatially
distributed interception and infiltration, an accurate representation of overland flow,
and subsurface flow in sewer networks. We go beyond current modeling practice by
using both a spatially distributed GPU-accelerated infiltration model and a fully
bidirectional coupling of the sewer network accounting for drains and overflows at
larges scales and very high resolutions. We validate and test the framework in lab-
oratory, rural and urban scenarios. We answer the question whether first-order or
second-order schemes in the surface flow discretization of the full 2D SWEs should
be favored in terms of the workload–accuracy tradeoff. Moreover, we highlight the
influence of resolution and of the individual model components. Finally, we address
the extent of computational acceleration on a modern GPU for high-resolution sim-
ulations of entire cities.

4.2 Methods

4.2.1 Surface flow model

The full shallow water equations (SWEs) are used to describe the surface flow and
may be written in vector form as

∂tU + ∂xF (U) + ∂yG (U) = Sb (U, b) + Sf (U) , (4.1)

where U = [h, hu, hv]T is the vector of conserved variables, h represents the water
height, hu is the discharge along the x-axis, and hv is the discharge along the y-axis.
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F and G are the flux functions,

F =

 hu

hu2 + 1
2gh

2

huv

 , G =

 hv

huv

hv2 + 1
2gh

2

 . (4.2)

The bed slope term Sb,

Sb =

 0

−gh∂xb
−gh∂yb

 , (4.3)

models the fluid’s acceleration due to the gravitational forces. The friction term Sf ,

Sf =

 0

−gn2h−1/3u
√
u2 + v2

−gn2h−1/3v
√
u2 + v2

 , (4.4)

accounts for the bed friction. Here, u and v are the average flow velocities in x
and y directions respectively, g is the gravitational constant, b is the bathymetry
(assumed to be time-independent), and n is the Manning friction coefficient.
To integrate the interception and infiltration processes of the runoff model and

the sewer model with the surface flow, coupling terms Sr and Ss, respectively, are
added on the right hand side of Eq. (4.1). The coupling term for the sewers Ss
accounts for the specific sewer exchange discharge qe (m/s). The source terms Sr
and Ss are given by

Sr =

re(t)0
0

 , and Ss =

qe(U)
0
0

 . (4.5)

The runoff rate re (m/s) is the difference between the effective precipitation rate
and the effective infiltration rate. Its precise application is defined in Section 4.2.4.

4.2.2 Spatio-temporal discretization of the surface flow

For the spatial discretization of the SWEs, the finite volume method (FVM) was
chosen on a uniform Cartesian grid. The FVM discretizes the conserved variables
U as cell averages yielding a system of ordinary differential equations for the cell
averages Uj,k(t). For the simulation of the overland flow, we employ either a first-
order accurate or a second-order accurate scheme. The first-order CN scheme (Chen
and Noelle, 2017) preserves still-water steady states, i. e. it is well-balanced. More-
over it enables a better handling of flow states across bed discontinuities than the
original hydrostatic reconstruction (HR) scheme proposed by Audusse et al. (2004).
A second-order accurate extension of the first-order CN scheme is presented in

72



4.2 Methods

(Buttinger-Kreuzhuber et al., 2019), to which we will refer as the BH scheme. The
second-order accuracy in space is achieved through a minmod limiter. The minmod
parameter is set to 1 in order to ensure robust and fast simulations (Horváth et al.,
2020). At wet-dry boundaries only the velocities are set to zero below a cut-off water
depth threshold. In the simulations this threshold is set to 0.1 mm. The surface flow
is discretized in time by the explicit Euler’s method for the first-order CN scheme
with a CFL constant of 0.5 to guarantee numerical stability and non-negativity of
the water depths. The second-order BH scheme is integrated in time with Heun’s
method and the CFL constant is set to 0.25. Both schemes are mass conserving. The
friction source term Sf is evaluated in a semi-implicit manner by splitting it into a
coefficient-wise product of an implicitly evaluated state and an explicitly evaluated
friction term S̃f (Brodtkorb et al., 2012; Buttinger-Kreuzhuber et al., 2019).

4.2.3 Runoff model

The spatially distributed runoff simulation integrates the surface flow routing com-
ponent with an interception and an infiltration component determining the effective
surface runoff. First, part of the rain is stored in the canopy of vegetation through
interception. Second, infiltration occurs as surface water percolates into permeable
soils. The remaining water effectively materializing during a rain event runs off the
surface as overland flow.
The rainfall intensity is given by a time- and space-dependent precipitation rate

p. The integrated interception component reduces the effective precipitation and
accounts for micro-topographic depressions and losses due to vegetation. The cu-
mulative interception I(t) until time t is modeled with a constant non-negative rate
i until a predefined storage capacity IS is reached. Thus, the spatially distributed
effective precipitation rate is given by

pe(t) =

{
p(t)− i if I(t) < IS ,

p(t) else.
(4.6)

The infiltration process is modeled by the Green–Ampt equation, the cumulative
infiltration F up to time t is∫ F (t)

0

F

F + (ψ + h) ∆θ
dF =

∫ t

0
Ks dt, (4.7)

where Ks is the saturated hydraulic conductivity. The difference ∆θ between the
initial water content and the saturated water content of the soil is usually called soil
porosity. The suction head ψ represents the capillary attraction of the water towards
the soil voids. Solving Eq. (4.7) for the infiltration rate f , the time derivative of F ,
we obtain

f(t) =
dF

dt
= Ks

[
(ψ + h) ∆θ

F (t)
+ 1

]
. (4.8)
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The proposed dynamic infiltration model accounts for the surface water pressure
via the surface water height h. A shortcoming of the presented Green–Ampt model
is the inability to account for multi-layered soils, limited storage capacity, soil water
redistribution in dry phases and macropores. Extensions to overcome these limi-
tations have been proposed (Corradini et al., 2000; Gowdish and Muñoz-Carpena,
2009; Mohammadzadeh-Habili and Heidarpour, 2015; Leandro et al., 2016).

4.2.4 Temporal discretization of the runoff model

The Green–Ampt (GA) model is discretized in time with the implicit Euler method
solving equation (4.8) at every cell for every time step. The infiltration depths F at
time step tn+1 is given by

Fn+1 =
1

2

(
Fn +Ks∆t

)
+

1

2

√
(Fn +Ks∆t)

2 + 4Ks∆t∆θ (hn0 + Ψ).

(4.9)

We note that, even though the infiltration rate is undefined for F = 0, the implicit
Euler method yields a well-defined infiltration depth close to zero, in contrast to the
explicit Euler method. If the infiltration depth increment ∆F , defined by ∆Fn =
Fn+1 − Fn, exceeds the available surface water depth, it is restricted to ensure a
nonnegative surface water depth. The effective infiltration rate is then given by

fne =
1

∆tn
min(∆Fn, hn), (4.10)

where ∆tn is the CFL-limited timestep of the overland flow for timestep n. For the
runoff model, it is enough to perform a simple integration for both the effective
precipitation and infiltration rate. We combine the precipitation and infiltration
increment into a single effective runoff increment ∆rne ,

∆rne = ∆tn (pne − fne ) . (4.11)

The overland flow and runoff models are tightly coupled, every step in the surface
flow simulation is synchronized with the computation and application of the runoff
update.
As the surface water depths and the infiltrated depths might be orders of mag-

nitude larger than the runoff increment ∆re, we add the runoff increment using
the compensated summation principle (also known as the Kahan summation algo-
rithm). For a precise addition, we add the runoff increment of the current time step
to a pending runoff state. Then, the respective parts in the pending runoff state
are added to the surface water depths and the infiltrated depths. The high-order
difference between the updated and the previous surface depth is then subtracted
from the pending runoff state. The low-order difference, which is too small for being
accounted for in the addition to the surface depth, remains in the pending runoff
state and is included in future time steps. With this technique, we keep track of the
lower-order part of the runoff increments over the entire simulation period, which
efficiently guarantees mass conservation.
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4.2.5 GPU implementation of the runoff model

The spatial discretization of the surface flow with the FVM enables straightforward
parallelization on regular grids, as only neighboring cells need to be considered
when computing the next time step. For the first-order CN scheme, only the direct
neighbors are accessed. For the second-order BH scheme, the computation of the
minmod-limited gradient requires a neighborhood of two cells to be accessed in the
four axis-aligned directions. On the GPU, a simulation tile is split into blocks of 16
by 16 cells. This effectively results in 14 by 14 cells for the first-order CN scheme
or in 12 by 12 cells for the second-order BH scheme due to the different number of
halo cells required. The GPU implementation for the surface flow uses the CUDA
platform of NVIDIA and uses shuffles introduced with the Kepler microarchitecture
(Horváth et al., 2016). Both the surface state and the infiltration state are stored in
single-precision floating-point variables. Due to the use of single-precision floating-
point state variables, the memory burden is lower and floating-point operations are
faster, even if it requires the compensation technique introduced in the previous
section. On a modern GPU with 24 GB of video memory the domain size in our
computational model is limited to around 175 million active (wet) cells for the
second-order BH scheme with dynamic runoff. For the first-order CN scheme, the
domain size is limited to around 225 million active cells as the first-order time
integration does not require the storage of an intermediate state.

4.2.6 Sewer network model

In the Storm Water Management Model (SWMM), a sewer network is represented
by a set of nodes connected by links (Rossman, 2017). Links transmit pipe discharges
Q from one node to another. A so-called node assembly consists of the node and
half of the links connected to the node. At each node assembly, the change in the
hydraulic head is modeled by the continuity equation. The pipe flow is governed
by the transient 1D SWEs and is solved with a finite difference scheme. Thus, at
each link, momentum and continuity are conserved, in contrast to the nodes, where
only continuity is conserved. The continuous state variables in the time differences
are approximated with their average values over the conduit length. SWMM 5.1
uses an implicit backwards Euler method for the time discretization, which is solved
iteratively with Picard’s method. We use the Preissmann slot model, implemented
in the latest version of SWMM 5.1.013, which is integrated in our coupled model
setup. SWMM 5.1.013 is written in C++ and is easily incorporated into existing
C++ software such as the proposed modeling framework.

4.2.7 Bidirectional sewer–surface coupling

The sewer–surface discharge exchange term depends on the water level at the surface
w, the hydraulic head at the manhole H and the bed surface elevation b. In the
following, Am and Dm are the manhole’s area and diameter, respectively, di is the
distance between the surface and the invert level of the pipes entering the node. The
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invert level refers to the lowest elevation admitting water flow. Following Djordjević
et al. (2005), Chen et al. (2016), Rubinato et al. (2017), and Fernández-Pato and
García-Navarro (2018), we distinguish between four cases:

1) inflow into a non-pressurized node,

2) inflow into a pressurized node, where the surface flow depth is small when
compared to the node width,

3) inflow into a pressurized node, where the surface flow depth is large when
compared to the node width,

4) outflow onto the floodplain.

If the head in the pipe network is lower than the surface elevation, i. e. H < di, the
discharge exchange Qe (m3/s) is given by the free weir equation

Qe = −2

3
cd,wπDm(2g)1/2h3/2. (4.12)

If the head in the pipe network exceeds the surface elevation, i. e. H > di, the
discharge exchange is either given by the submerged weir equation,

Qe = −cd,swπDm(2g)1/2h(h+ di −H)1/2, (4.13)

as long as h < Am/πDm. If h ≥ Am/πDm the node is considered fully submerged,
the submerged orifice equation

Qe = −cd,oAm(2g)1/2(h+ di −H)1/2, (4.14)

is considered a more appropriate description. For example, for circular manholes, the
orifice equation is applied if h > Dm/4. The discharge coefficients for the free weir,
the submerged weir, and the orifice equations are set to cd,w = 0.56, cd,sw = 0.11,
and cd,o = 0.2, respectively (Rubinato et al., 2017). If the head in the pipe system
exceeds the water level of the surface flow, an orifice equation is used (Djordjević
et al., 2005). Assuming that the surface velocity is negligible, the discharge exchange
is given by

Qe = cd,oAm(2g)1/2(H − h− di)1/2. (4.15)

This equation also holds for dry surface cells, i. e. when h = 0.
With these four cases, all exchange flow conditions are properly handled. A neg-

ative exchange discharge Qe indicates flow into the sewer network from the surface,
a positive value indicates sewer overflow. Sewer overflow also occurs if water flow
from the roofs of the surrounding buildings exceeds the sewer inflow capacity. Conse-
quently, water spills over at this node. In this case, the roof water is directly added
to the sewer overflow and not reduced by the sewer–surface exchange equations,
Eqs. (4.12)–(4.15).

76



4.2 Methods

The sewer–surface coupling takes place only at the cells where manholes and
inlets are connected to the surface. To this end, the geometry of the manholes and
inlets is rasterized on the simulation grid. Effectively, at each cell the perimeters
and areas of all intersecting manholes and inlets are collected. Furthermore, we
also collect the contributions of each cell to each sewer node. Both cases where
multiple manholes intersect the same cell, as well as cases where multiple cells
contribute to the same node are resolved. For each rasterized cell, we keep track of
the corresponding node head by averaging over all nodes connected to the specified
cell. The sewer node exchange discharge Eqs. (4.12)–(4.15) are solved on a per-cell
basis, where we account for the relative contributions,

Qe =
∑

Aj,kqej,k. (4.16)

The specific sewer exchange term for the surface model is limited by the water
availability in the case of sewer inflow, i. e.,

−qej,k = min

(
hj,k
∆t

,−qej,k
)
. (4.17)

In time, the sewer network model is interleaved with the surface and runoff model
with an a priori defined coupling timestep ∆TC . If not stated otherwise, it is set to
1 s. A time step of the coupled model is illustrated in Fig. 4.1 and subdivided into
the following steps:

1) Exchange sewer-surface coupling data, i. e. provide node heads and pending
overflows to the surface flow simulation, and provide exchange discharges to
the sewer model.

2) Advance the simulators in parallel from time T i to T i + ∆TC .

3) Compute the exchange data, including reconciliation of applied exchange dis-
charges in both the surface simulator and in the sewer simulator.

Each simulator performs multiple routines at each of these steps (see Fig. 4.1). When
coupling data need to be exchanged, the simulators are required to wait for the other
simulator at synchronization barriers. Synchronization barriers are set only at the
beginning and the end of a coupled simulation time step, but not in the individual
simulator’s advance methods. The loop for the time steps in the advance step is
executed independently of the other simulator. To advance from T i to T i + ∆TC ,
each simulator only needs the minimal amount of time steps required for its own
numerical stability.
For the sewer simulation, the exchange discharges are obtained from the sur-

face simulation and applied to the sewer network. Additional inflows from external
sources, e. g. roofs, are applied and compared with the sewer network’s inflow ca-
pacities. These excess discharges contribute to the pending node overflow. SWMM
routes the water flow in the sewer network. Then, the sewer network state (node
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Fig. 4.1. In a single time step of the coupled sewer–surface model, three major substeps
(indicated in gray at the left) with associated routines are performed in each simulator.
The sewer and the surface simulator are executed in parallel, but they need to be synchro-
nized for data exchange. These synchronization barriers (indicated with double red lines)
are needed for data exchange between the two simulators (indicated with the dashed red
arrows). With this less tightly coupled approach, each simulator is able to advance inde-
pendently of the other.
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depths and heads, link discharges and volumes, inflow volumes, and pending over-
flow volumes) is updated. Pending node overflows and applied inflow discharges
are then provided to the surface runoff simulation. In turn, the sewer simulation
acquires the exchange discharges applied in the surface simulation. During the par-
allel execution of the coupling time step, the state of the surface variables remains
fixed for the sewer simulation and vice versa. As the sewer inflows computed by the
sewer simulation might exceed the available surface water, the discrepancy between
the applied inflow in the sewer network simulation and the actual water removed
in the surface simulation needs to be resolved. Therefore, a harmonization step is
necessary to reconcile mass balance.
For the simulation of the surface flow and runoff, node heads from the sewer sim-

ulation are necessary for the computation of the sewer–surface exchange discharges.
Once acquired, the surface runoff simulation is able to advance independently of
the sewer simulation. The routines in the surface runoff advance step are performed
on the GPU and looped until the next coupling time step T i + ∆TC is reached.
The surface state variables (water depth and level, surface flow discharges) and
the infiltration state variables (infiltration depth, pending runoff) are updated after
timesteps ∆tn according to Section 4.2.4. After the loop, the computed and applied
exchange discharges are provided to the sewer simulation. In turn, the applied in-
flow discharges into the sewer network and pending node overflows are acquired.
The exchange discharges of the surface runoff simulation are then reconciled with
the acquired discharges from the sewer simulation to resolve the discrepancies. This
harmonization guarantees that the mass balance errors remain small or vanish for
a simulation converging towards a steady state.
The coupled simulation time steps are executed until the simulation end time is

reached. As the sewer simulation and the surface runoff simulation are executed in
parallel, the execution time of the coupled surface–sewer model is determined by
the execution time of the slower simulator and not by the sum of the execution
times as it would be the case for a sequential coupled simulation. Usually, the one-
dimensional sewer network simulation is faster than the two-dimensional surface
flow simulation (Noh et al., 2018).

4.3 Results and discussion

We demonstrate the capabilities of the coupled model on laboratory and real-world
test cases. The scenarios include a small-scale rainfall–runoff plot experiment, a
rural catchment, and a full-scale urban test case including sewer coupling. More
specifically, we simulate the Thiès plot experiment, the HOAL catchment at Pet-
zenkirchen, Austria, and the city of Cologne, Germany. Furthermore, we validate
the sewer–surface coupling approach on a laboratory experiment presented in (Ru-
binato et al., 2017). The validation results for the sewer–surface coupling are in
Appendix A1.
The numerical simulations were performed on a desktop PC equipped with 10
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Intel i9-9820X cores at 3.3 GHz and 128 GB RAM. The GPU utilized for the test
cases was an NVIDIA Titan RTX in TCC mode. It features 4608 CUDA cores and
has 24 GB memory. In the following, the term runtime describes the cumulative
execution time of the simulation measured via wall clock timing. The runtime neither
includes the initialization process, such as reading input data, nor postprocessing
steps, such as writing results to the disk. However, the GPU runtime includes data
transfer between the GPU and the CPU during simulation.

4.3.1 Thiès plot experiment

We validate the model with measurements performed at in Thiès, Senegal, by
(Tatard et al., 2008). The experiment was carried out on a 10 × 4 m2 plot. The
plot has an average slope of 1%, and the resolution of the digital terrain model
(DTM) is 0.1 m. Rainfall was simulated with a constant rate of 70 mm/h for a
duration of 1 h on the sandy soil. In the reference data set of (Mügler et al., 2011),
measurements of mean flow velocities are available at 62 locations across the plot
(Fig. 4.2a). Following (Simons et al., 2013), Manning’s roughness coefficient was set
to a constant value of 0.014 m1/3/s throughout the entire plot. We compare the
results from the first-order CN and second-order BH scheme for the steady state
after 1 h. The simulated water depths show a slightly clearer depiction of the flow
paths in the second-order scheme, compare Fig. 4.2b–c. The simulated velocities are
shown as arrows in Fig. 4.2b–c for the CN and BH scheme.
In Fig. 4.3a, we compare the simulated velocities with the measured velocities.

Second-order schemes are computationally more involved than first-order schemes,
but are supposed to yield superior results due to the improved accuracy. The root
mean square error (RMSE) of the velocities is defined by

RMSE =

√
1

N

∑
i

(vis − vio)2, (4.18)

where N is the total number of all observed velocities vio. The RMSEs of the ve-
locities are consistently lower for the second-order scheme for all resolutions from
0.05 to 0.25 m, as is shown in Fig. 4.3b, and the achieved RMSE of 0.026 m/s is
in line to results in the literature (Tatard et al., 2008; Mügler et al., 2011; Simons
et al., 2013; Caviedes-Voullième et al., 2020). However, we emphasize that a proper
discretization of the source term is important for the simulation of runoff processes,
even more so in the case of first-order accurate schemes. The superiority of the
first-order CN scheme above the popular HR scheme (Audusse et al., 2004) is no-
ticeable from the velocity errors in Fig. 4.3a and b. The simulated velocities of the
HR scheme are consistently lower than for the CN scheme, as the HR scheme is not
able to fully account for the bed slope in the case of shallow flow (Delestre et al.,
2012). Switching to second-order accuracy in the HR scheme fixes this issue, albeit
at the cost of a higher computational workload. The velocities of the second-order
HR scheme are only slightly deviating from the BH scheme, therefore they were
excluded from the plots in Fig. 4.3.
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(a)

(b) (c)

Fig. 4.2. Thiès experiment on a plot of 10× 4 m2. (a) Terrain with velocity measurement
locations (white dots). (b) Simulated water depths after 1 h and velocities (colored arrows)
of the first-order accurate CN scheme and a resolution of 0.1 m. (c) Simulated water depths
after 1 h and velocities (colored arrows) of the second-order accurate BH scheme and
a resolution of 0.1 m. The flow patterns of the first-order and second-order scheme are
comparable for this fine resolution.
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Fig. 4.3. Thiès. (a) Simulated velocities over measured velocities at steady-state conditions
for a resolution of 0.1 m. The second-order scheme develops higher velocities than the first-
order scheme. (b) Root mean square errors (RMSEs) over cell sizes. For the first-order
scheme, the error decreases with resolution. For the second-order scheme the trend is not
as pronounced. (c) RMSEs over GPU runtimes. For the same amount of computational
time spent, the first-order CN scheme produces better results than the BH scheme.
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Fig. 4.4. Thiès. Runtimes for the sequential CPU and the GPU implementation of the
first-order CN scheme for a resolution of 0.05 m. The smooth, nearly linear line indicates
that wet-dry boundaries are treated properly and no high speeds develop.

In line with numerical theory, the RMSE decreases with grid refinement as shown
in Fig. 4.3b. However, the RMSEs of the second-order scheme do not exhibit such
a clear trend as the RMSEs of the first-order scheme. For the second-order scheme,
the theoretical convergence order with regard to mesh refinement is limited, as
the water surface is highly irregular in rainfall–runoff simulations. Typically, for
smooth solution surfaces the second-order accurate scheme is expected to be more
efficient when considering the accuracy versus runtime tradeoff (Horváth et al.,
2020). However, wet–dry boundaries weaken this advantage already for analytical
test cases, as for example in the parabolic basin test case (Thacker, 1981; Buttinger-
Kreuzhuber et al., 2019). There, the theoretical convergence order of 2 for a second-
order scheme degrades to 1.5 for the conserved variables, i. e. the water depths and
the discharges.
When the corresponding runtimes of the CN and the BH schemes are compared in

Fig. 4.3c, the first-order CN scheme produces better results for the same amount of
computational time spent. In terms of the tradeoff between computational workload
and accuracy, this suggests the use of finer grids together with first-order schemes for
the surface flow in rainfall–runoff simulations. Summarizing, we conclude that fast
first-order schemes, which properly resolve the source term, are sufficiently accurate
for rainfall–runoff simulations.
The runtimes increase smoothly with simulation time (Fig. 4.4), which indicates

that no high numerical speeds are encountered. Otherwise, they would slow down
the simulation due to the CFL condition. This underlines the fact that the first-
order CN scheme is robust, as no unphysical high velocity spots emerge. The parallel
GPU implementation is more than 30 times faster than the sequential CPU imple-
mentation. In this case, due to the low number of cells in the domain, that is 16 000
cells for a resolution of 5 cm, the GPU can not fully exploit its parallel capabilities.
The modest speedup in this small-scale experiment is therefore not representative
of large real-world test cases.
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(a)

200 m

(b)

(c)

Fig. 4.5. HOAL Petzenkirchen. (a) Terrain elevation with the catchment outlet in the
south east indicated by the label. (b) Spatial distribution of Manning’s roughness coefficient
(s/m1/3) based on land use. (c) Spatial distribution of the saturated hydraulic conductivity
based on soil types.

4.3.2 HOAL Petzenkirchen

This scenario analyzes a rainfall event in June 2013 in the Hydrological Open Air
Laboratory (HOAL) catchment in Petzenkirchen, Lower Austria. The HOAL catch-
ment is used to test hydrological hypotheses under natural conditions. The catch-
ment is 0.66 km2 in size and is mainly covered by arable land (87%) and grass-
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(a)

200 m

(b)

Fig. 4.6. HOAL Petzenkirchen. (a) Simulated water depths at the peak of the second rain
block after 27.8 h. (b) Infiltrated depth F after 39 h at the end of the 1 m simulation.

land (10%) (Blöschl et al., 2016). A high resolution (0.5 m) DTM of 2012 was
used. The topographic elevation of the catchment ranges from 255 to 325 m.a.s.l.
(Fig. 4.5a). Manning’s roughness coefficient is set to 0.1 s/m1/3 for the riparian
forest, to 0.05 s/m1/3 for grassland and arable land, and to 0.03 s/m1/3 everywhere
else (Fig. 4.5b).
The top soil consists mostly (95%) of silt loam and silty clay loam. An analysis

of the saturated hydraulic conductivity Ks with double-ring infiltrometers has been
performed in 2018 for twelve plots (Picciafuoco et al., 2019). Three of the twelve
plots are located on arable land, the other nine plots are located on small strips
of grassland. The 131 measured values vary by two orders of magnitude, with a
minimum of 1 mm/h and a maximum of 130 mm/h. The spatial distribution of the
saturated conductivity follows soil types (Fig. 4.5c). The saturated conductivities
range from 1 to 32 mm/h and are set according to literature values (Rawls et al.,
1983; Carsel and Parrish, 1988; Smith et al., 2002) and measured values. Streets and
the river bed are assumed to be impermeable. We specified an interception storage
capacity of 5 mm for the riparian forests around the outflow (colored in light green
in Fig. 4.6a) and of 2 mm for the arable land and grassland.
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Fig. 4.7. Hydrological Open Air Laboratory (HOAL) Petzenkirchen. (a) Simulated catchment runoff discharges without interflow (violet)
and with interflow (red) against observed outlet discharges (gray) for the simulation on the 1 m grid. The interflow component (green)
accounts for return flow from previously infiltrated water. (b) Close-up of the first rain block for resolutions of 1 m and 8 m. The higher
resolution causes a higher catchment runoff at the outlet. (c) Catchment runoff volumes.
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Table 4.1. Hydrological Open Air Laboratory (HOAL) Petzenkirchen. The root mean
square error (RMSE) and the Nash–Sutcliffe efficiency (NSE) of the discharges show good
agreement between model and measured data for resolutions ∆x below 4 m. The runoff vol-
ume error (RVE) shows that the measured catchment runoff volume exceeds the simulated
runoff volume (SRV).

∆x [m] Scheme Runtime (GPU) [h] RMSE [m3/s] NSE SRV [m3] RVE

1.0 Second Order (BH) 0.3525 0.0627 0.6832 2080.2 -0.245
1.0 First Order (CN) 0.0806 0.0628 0.6819 2151.0 -0.241
2.0 Second Order (BH) 0.0702 0.0622 0.6877 1988.8 -0.246
2.0 First Order (CN) 0.0176 0.0626 0.6834 1997.3 -0.245
4.0 Second Order (BH) 0.0221 0.0624 0.6857 1667.5 -0.258
4.0 First Order (CN) 0.0080 0.0627 0.6823 1694.3 -0.256
8.0 Second Order (BH) 0.0106 0.0705 0.5986 943.8 -0.290
8.0 First Order (CN) 0.0054 0.0714 0.5881 917.2 -0.291

The investigated heavy rain event starts on June 23 at 21:00 and is simulated
for 1.5 days. There are two distinct blocks of intense rainfall. The first occurs after
1 h, and the second after 28 h. The main flow paths of the surface runoff for the
second rain block are clearly visible (Fig. 4.6a). Spatial patterns of the infiltrated
depths (F ) develop and correlate with available surface water and infiltration ca-
pacity (Fig. 4.6b). In this scenario, a linear reservoir model is used as a simple
approximation of the interflow (Simons et al., 2013). The interflow discharge Q is
given by the ordinary differential equation

d

dt
Q(t) =

1

κ
(αV (t− τ)−Q(t)). (4.19)

Here, a proportion α = 0.17 of the infiltrated volume V , i. e. the sum of the in-
filtrated depths inside the catchment, is routed through the catchment with an
average residence time κ = 1 h and a temporal offset τ = 15 min. The interflow
is directly added to the simulated overland flow discharges at the catchment out-
let. The simulated overland flow discharges at the catchment outlet, the simulated
catchment runoff discharges including the interflow, and the measured discharges
are shown together with the rainfall in Fig. 4.7. Overall, the model is able to predict
the discharges of the first rain block well. Improvements to the model’s predictive
capabilities are possible especially at the second day of the event. Towards the end
of the event, smaller precipitation amounts cause higher measured catchment runoff
discharges. In fact, the role of groundwater exchange flows seems to become more
and more prominent and thus the interflow component has a significant influence.
This is also visible in the catchment runoff volumes, where the model predictions for
the first rain block are good, but deteriorate towards the end of the event (Fig. 4.7c).
A quantitative analysis of the discharges and volumes is performed in terms of

the discharge RMSE and the Nash–Sutcliffe efficiency (NSE),

NSE = 1−
∑

i(Q
i
s −Qio)2∑

i(Q
i
o −Qo)2

, (4.20)

87



4 An integrated GPU-accelerated modeling framework

Table 4.2. HOAL Petzenkirchen. Total runtimes of the sequential CPU implementation
and the GPU implementation of the first-order CN scheme at the end of the simulated 39 h.
For this small-scale case, the GPU is exploiting its computational power only at the highest
resolutions, for lower resolutions it is not fully occupied and computational resources are
left unused.

Runtime [h] Runtime per cell [ms]
Resolution ∆x [m] Number of cells CPU GPU CPU GPU Speedup

1.0 748095 146.14 0.081 703.3 0.39 1813.3
2.0 187717 15.64 0.018 300.0 0.34 888.9
4.0 47276 2.18 0.008 166.1 0.61 272.8
8.0 11997 0.42 0.005 126.3 1.62 78.0

where Qs are the simulated discharges, and Qo is the mean of the observed dis-
charges. The NSE is a measure of fit, an efficiency of 1 represents a perfect fit.
Finally, the relative runoff volume error (RVE),

RVE =
Vs(T )− Vo(T )

Vo(T )
, (4.21)

measures the deviation of the simulated catchment runoff volume (including the
interflow) Vs from the observed catchment runoff volume Vo at the end time T of
the simulated event. Table 4.1 shows a slight beneficial effect of a higher resolution
∆x on the NSE. The RMSE does not benefit as much from the higher resolution.
This is due to its sensitiveness to extreme values. The surface runoff volume increases
with the resolution: the simulation on the 8 m grid only results in approximately
half of the total excess runoff volume of the simulation on the 1 m grid. For the
8 m simulation, runoff paths are blocked. Fragmentation of the runoff occurs, and
the runoff takes the shape of isolated puddles. This effect is also observed in other
studies (Noh et al., 2018). The peaks tend to get broader for higher resolutions.
When comparing the second-order accurate BH scheme with the first-order accurate
CN scheme, we see that the effect is less prominent. The second-order accurate BH
scheme provides slightly better results than the first-order accurate CN scheme,
however, at the cost of slower runtimes. The first-order scheme is between 2 to 4
times faster and is tending to become faster with an increasing number of cells. We
expect the accuracy–workload tradeoff between first-order and second-order schemes
to be in favor of second-order schemes, if the water surface becomes smoother due
to the development of larger, connected streams.
Additional measured data that provides spatio-temporal information may shed

more light on the involved processes and the quality of the model. A possible tech-
nique is hydrograph separation, where the water is attributed to pre-event and the
different rain blocks in the event. Furthermore, spatially distributed observation
data of the surface depths is crucial (Grayson and Blöschl, 2001; Bernet et al., 2018;
Caviedes-Voullième et al., 2020). Such data could be used to determine the con-
tribution of overland flow to total discharge and to assess the advantages of high
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resolution rainfall–runoff modeling in more detail. Overall, the model provides a
good fit as the NSE values are around 0.68 for resolutions below 4 m.
For the 1 m simulation, 0.75 million cells are wet at the peak of the second rain

block, which corresponds to the simulated region of 0.75 km2 (including a small
buffer zone around the catchment). Regarding the runtimes of the sequential CPU
and the parallel GPU implementation, speedups of three orders of magnitude are
achieved (Table 4.2). The speedup increases with higher resolutions and higher
workloads as the GPU is not fully utilized for a low resolution. For a fully occupied
GPU, doubling the resolution causes a theoretical increase of the amount of work by
eight times as the number of cells quadruples and due to the CFL condition twice the
number of time steps are required. For the 1 m simulation, 90% of the computation
time on the GPU is spent in the following routines: the reconstruction and flux
computation (32%), the time integration and time step reduction (30%), and the
computation and integration of the pending runoff (28%). In the latter routines, it is
not the amount of floating-point operations but the memory transfers that prevent
the GPU from achieving faster runtimes. On the CPU, the distribution is slightly
different with 60%, 11%, and 9%, respectively, due to faster memory access rates.
One drawback of the GPU implementation is the comparably longer development

time. Parallel CPU implementations are possible (Neal et al., 2010; Noh et al.,
2018; Morales-Hernández et al., 2021), but even if the implementation achieves full
parallelization speedups, over thousand CPU cores would be needed to match the
computational advantage of the GPU. From an economic and ecological perspective
the GPU simulation still performs better with regards to the power consumption
than a parallel CPU simulation running on a supercomputer. The fast GPU sim-
ulation opens up new possibilities for this small catchment, such as uncertainty
quantification and calibration tasks in a reasonable time span.

4.3.3 Urban flooding in Cologne

We study two urban scenarios in the city of Cologne, Germany. First, we present a
dual-drainage model at the central part of the city, at the eastern bank of the Rhine
river, to which we refer as Cologne Center-East. Second, we present a city-scale
simulation encompassing the entire city of Cologne with an area of 23.73×27.14 km2

without sewer coupling.
In the first scenario, the region simulated with the coupled model lies at the

eastern bank of the Rhine river and covers an area of 5.41× 9.86 km2. The terrain
model is obtained from light detection and ranging (LIDAR) data where solid urban
features such as buildings or bridges were removed in a pre-processing step, so that
the DTM represents a so-called bare earth DTM. The resolution of the DTM is
1 m with a typical vertical accuracy around a decimeter (Kraus, 2011; Dottori et
al., 2013). The terrain is relatively flat, mostly ranging between 40 and 60 m.a.s.l.
(Fig. 4.8a). The simulation domain exhibits modest average slopes of 0.3 m/km
along the Rhine river from south to north, and of around 1 m/km from east to
west.
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(a)

1 km

(b) (c)

Fig. 4.8. Cologne Center-East coupled simulation. (a) The map of the terrain elevations
shows only modest slopes across the simulation domain. The simulated region is heavily
urbanized as indicated by the large amount of buildings, displayed in gray. (b) Manning’s
roughness coefficients (s/m1/3) are derived from land use. (c) The spatial distribution of
the saturated hydraulic conductivity is based on soil types. Streets and the river bed are
set as impermeable zones.

Buildings and land use data are extracted from the official ALKIS data set of 2021
(Caffier et al., 2017). Buildings cover 13% of the area, they are impermeable for the
surface flow and water from roofs is routed to sewer nodes in the coupled model, thus
building cells remain dry during simulation. Roughness coefficients are mapped from
the land use, a detailed overview of the spatial distribution is shown in Fig. 4.8b. The
interception parameters are assumed to correlate with land use. Woods and gardens
are assigned a storage capacity of 5 mm, public recreational areas and residential
areas a capacity of 2 mm. Rivers, streets and parking lots are assumed to not retain
rain, thus their storage capacity is set to zero. The infiltration parameters are derived
from a soil map, compare the saturated hydraulic conductivity in Fig. 4.8c. Streets
and squares as well as rivers and lakes are considered impermeable.
We preprocessed sewer data for SWMM for the eastern bank of the Rhine river,

therefore, cells west of the river are excluded from the simulation. The active simula-
tion region is thus restricted to 39 km2. The sewer network consists of 6392 junction
nodes and 7206 conduits linking them with a total length of 245 km. Moreover there
are 16 pumps, 16 outfalls and 18 weirs in the simulation domain, which are included
in the model. The sewer network and the invalidated region are shown in Fig. 4.9a in
yellow and pink, respectively. Exchange between the sewer network and the surface
is assumed to occur at the nodes with the parameters specified in Section 4.2.7.
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(a)

Sewers

Invalid

1 km

(b)

Fig. 4.9. Cologne Center-East coupled simulation. (a) The sewer network (yellow) and
regions invalid for simulation (pink). (b) Maximum water depths of the 1 m simulation at
the final simulation time T = 2 h. Fig. 4.10 focuses on the region marked with the red
frame.

Each node has a maximum inflow capacity of 0.1 m3/s. Rain that falls on buildings
is directly routed to an assigned sewer junction node, if the roof water discharge
exceeds the capacity, it spills over at the nodes.
We simulate a hypothetical uniform one-hour rainfall of 53 mm/h correspond-

ing to approximately a 100-year event according to the KOSTRA 2010R data set
(Junghänel et al., 2017). With a cell size of 1 × 1 m2, the grid has nearly 40 mil-
lion cells valid for simulation. We focus on the region marked with a red frame in
Fig. 4.9b to illustrate the effects of the sewers, the resolution, and the order of ac-
curacy of the surface flow scheme. The water depths are aggregated in time during
the first-order 1 m simulation resulting in a maximum water depth for each cell at
the end of the simulation (Fig. 4.9b).
The water depths of the coupled simulation for the specified region are aggregated

in time resulting in maximum water depths (Fig. 4.10a). This heightfield serves as
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(a)

(b)

(c)

(d)

Fig. 4.10. Cologne Center-East detail. (a) Maximum water depths occurring during the
coupled sewer–surface simulation with the first-order scheme and a resolution of 1 m. Dif-
ference heightfield of the maximum water depths between (b) the 1 m simulations with
and without sewers, (c) the 1 m and the 4 m simulations, and (d) the first-order CN and
the second-order BH accurate scheme. Regions with positive values (red) indicate higher
maximum water depths in the coupled first-order simulation at 1 m shown in (a) than in
the corresponding alternative simulations (b–d).
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Table 4.3. Cologne Center-East coupled simulation. Runtimes of the sequential SWMM
CPU solver and the GPU runoff simulation for the simulated timespan of 2 h over different
resolutions ∆x. For resolutions above 2 m, the sewer simulation on the CPU dominates the
runtime of the coupled model.

Resolution Number Runtime [h] Runoff/sewers
∆x [m] of cells Runoff (GPU) Sewers (CPU) runtime ratio

1.0 39023122 0.3657 0.2210 1.655
2.0 9755780 0.0612 0.2015 0.304
4.0 2438945 0.0164 0.2012 0.082

the reference for the difference heightfields, where positive values indicate higher
maximum water depths in the reference simulation than in the corresponding al-
ternative simulations. The differences between the simulation with sewer coupling
and the one without are spatially restricted to the vicinity of the sewer network
(Fig. 4.10b). For the simulation without sewer coupling, we assume that water
falling onto roofs can be drained by the sewer network. In regions with positive
values (red), the maximum water depths of the coupled simulation (Fig. 4.10a) are
higher than the maximum water depths of the simulation without sewer coupling.
In terms of the mean absolute error (MAE), the differences amount to 7.37 mm.
The mean signed error (MSE), where the results of the runoff simulation without
sewers are subtracted from those of the coupled simulation, amounts to −6.60 mm.
This indicates that surface water levels do not rise as high in the coupled simulation
due to sewer drainage. In fact, more water is drained from the streets than what is
spilling onto the streets as excess roof water, which exceeds node inflow capacities.
The sewer simulation also induces a water redistribution and causes minor floodings
at a few streets due to sewer overflows. Overall, the sewer simulation drains around
250 000 m3 of surface water.
In Fig. 4.10c, the difference field resulting from the subtraction of the maximum

water depths computed by a 4 m simulation from the 1 m simulation is displayed. In
regions with negative values (blue), the maximum water depths of the 4 m simulation
are higher than the corresponding maximum water depths of the 1 m simulation.
The difference between the maximum water depths of the 4 m and the 1 m grids
are spatially concentrated at certain locations and appear mostly where the DTM
shows strong variations at the scale of the employed cell size. For example, major
differences occur in the vicinity of underpasses and garage entrances, or at the edge
of elevated plateaus. At the edges of buildings, differences appear as boundary cells
are rasterized as wall cells in one grid but not in the other. Overall, the MAE
between the 4 m and the 1 m simulations is 8.12 mm. For the MAE computation
the results of the 1 m grid are downsampled onto the 4 m grid.
In Fig. 4.10d, we compare the first-order accurate CN and the second-order accu-

rate BH scheme. In general, the differences in the maximum water depths between
the two surface flow discretizations are marginal. Noticeable deviations are con-
centrated on a few spots and occur where relatively high velocities up to 1 m/s
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develop. This happens for example at sloped entrances to inner courtyards. In the
entire simulation domain, the MAE between the two schemes is 1.2 mm and the
MSE amounts to −0.1 mm. As we consider differences between the maximum water
depths occurring during the event, a non-nil MSE does not indicate a volume error
but rather indicates that the surface water travels a greater distance. In fact, the
negative MSE reveals that maximum water depths are slightly higher in the second-
order BH scheme. In this comparison, the errors are considerably smaller than in
the previous comparisons. The relatively small differences have to be considered in
light of the mild terrain slopes.
To thoroughly assess the quality of the predictive capabilities of the coupled

model, further validation is required. The validation of coupled models on large-
scale scenarios is challenging as in most cases the collected data is sparse. Possible
strategies to tackle this problem are the collection of crowd-sourced data (Yu et al.,
2016; Wang et al., 2018; Xing et al., 2018), imagery from unmanned aerial vehicle
sensing (Perks et al., 2016) or insurance claims (Zischg et al., 2018).
A comparison of runtimes of the coupled simulator for resolutions of 1 m, 2 m, and

4 m, in Table 4.3 shows that the GPU-accelerated 2D surface flow simulation is faster
than the sequential 1D CPU sewer simulation for low resolutions. This emphasizes
once more the massive gain in computing power for the surface flow simulation due to
the GPU-acceleration. Usually, solving the continuity and momentum equations for
the sewer flow only requires around 0.1% of the total coupled simulation runtime for
a sequential implementation (Noh et al., 2018). In the proposed implementation, as
the simulations advance in parallel, the runtime per coupling time step is determined
by the slower coupling component, which is either the GPU runoff simulation or the
CPU sewer simulation. Thus, in order to improve the model performance further,
effective parallelization strategies (Burger et al., 2014) of the sewer module are
necessary.
For the derivation of pluvial flood hazard maps, we perform benchmark tests re-

garding large simulation domains with a size of 23.73 × 27.14 km2 spanning the
entire city of Cologne. We simulate uniform rainfall of 53 mm/h that lasts for 1 h.
In order to account for surface flow routing after the rainfall ends, the total sim-
ulated duration is extended to 2 h. In this city-scale scenario shown in Fig. 4.11a,
infiltration and interception are considered and are set up analogously to the previ-
ously studied smaller domain. The 1.5 m simulation grid has a total number of 220
million cells valid for simulation, of which 17 million cells are rasterized buildings.
In this scenario, we do not explicitly simulate the sewer network of the entire city,
but we assume that water falling onto roofs can be drained by the sewer network,
therefore building cells are excluded from simulation. All other input parameters
remain unchanged. In Fig. 4.11b, we display the maximum water depths that occur
during the simulated event. The computational speed is faster than physical time,
with a total runtime of 1.62 h for a total simulated duration of 2 h. The simulation
uses up to 23.4 GB of memory on the NVIDIA Titan RTX GPU, close to its limit
of 24 GB.
In previous studies, urban regions of 40 km2 were modeled with an efficient hybrid
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(a) Invalid

2 km

(b)

Fig. 4.11. Cologne runoff simulation. (a) Buildings (gray), land use and invalid cells (pink)
for the simulated region covering the entire city. (b) Maximum water depth of the 1.5 m
runoff simulation without sewer coupling after 2 h, i. e. at the end of the simulation.
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parallelization strategy on an adaptive grid with a minimum cell size of 1 m (Noh
et al., 2018). Their model uses runoff coefficients depending on land use instead of
a dynamic infiltration model as in this work, but dynamic sewer coupling is also
integrated. In Xing et al. (2018), the city of Fuzhou, China, is modeled with a reso-
lution of 2 m and a constant drainage loss at streets neglecting bidirectional sewer
interaction and water routing in sewers. The simulation involves 66 million cells
and runs almost in realtime on a rack of 8 NVIDIA Tesla K80 GPUs. In contrast,
the proposed computational model is efficient in terms of memory consumption and
performance due to an elaborate implementation relying on single precision floating-
point values. We are able to simulate over 200 million cells on a single GPU with
24 GB memory, processing 10 million cells per GB of GPU memory. This is advan-
tageous against multi-GPU implementations as they require inter-GPU communi-
cation, which introduce an additional bottleneck and increase computation times
(Morales-Hernández et al., 2021). In order to support larger simulation regions and
higher spatial resolutions, an extension to multiple GPUs is possible.

4.4 Conclusion and perspectives

In this study, we present an integrated modeling framework for the simulation of
rainfall–runoff processes and urban flash floods. The introduced modeling framework
accounts for all the major processes needed for an accurate description of flash floods
while still accomplishing very fast runtimes.
Infiltration is modeled with the Green–Ampt equations in a fully dynamic and

spatially distributed way. An interception module accounts for initial rain abstrac-
tions due to vegetation. Instead of applying simple surface flow approximations, we
discretize the full 2D shallow water equations (SWEs). In the context of rainfall–
runoff simulations, the first-order accurate CN scheme (Chen and Noelle, 2017) was
shown to be able to reproduce velocities and discharges accurately. In particular,
using higher resolutions in the first-order scheme proved to be more beneficial than
using the second-order accurate BH scheme (Buttinger-Kreuzhuber et al., 2019)
when considering the tradeoff between accuracy and required computational work.
The tradeoff observation is expected to hold as long as the water surface is irregular
and not smooth, as it is often the case in rainfall–runoff simulations. We remark
that an appropriate bed source term discretization of the surface flow is essential
for providing correct velocity estimates. Moreover, in small catchments, resolutions
around a meter are required to resolve river beds and the topography along the
major flow paths.
For urban flash floods, the rainfall–runoff simulation is coupled with the sewer

network simulation from the Storm Water Management Model (SWMM). An effec-
tive approach for the bidirectional coupling of the sewer simulation to the surface
runoff simulation is developed, where the two simulators advance in parallel in each
coupling timestep. The runoff simulation is validated in the Thiès irrigation exper-
iment and in the HOAL Petzenkirchen catchment, where a NSE value of 0.68 was
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achieved for a simulation lasting for 36 hours and containing two heavy rain blocks
separated by a day. Regarding the validation of the coupled model, we point out
that more detailed spatial observations are needed in order to assess the model’s
predictive performance in a more exhaustive way.
We demonstrate the benefits of using graphics processing units (GPUs) as com-

putational devices to speed up the rainfall–runoff simulations. The GPU-accelerated
model enables high-resolution simulations for entire cities with simulation domains
involving up to 225 million cells on a single GPU with 24 GB of memory. In other
words, we enable simulation of regions up to 220 km2 with a resolution of 1 m in
realtime. This removes the need for inconvenient domain decompositions and multi-
ple localized, small-scale simulations. Speed-ups of up to three orders of magnitude
are achieved for simulated regions with around 10 million cells, if compared against
a serial CPU implementation. The speedup increases with the number of cells, thus
large simulation regions profit even more from GPU acceleration.
In summary, the main contributions of the paper are:

1) a spatially distributed GPU-accelerated rainfall–runoff model combining the
Green–Ampt infiltration model and the full SWEs,

2) an efficient bidirectional coupling between the surface flow simulation and the
sewer network simulation using an interleaved time-stepping approach,

3) fast coupled simulations for entire cities at resolutions around a meter,

4) validation and performance tests on rural and urban scenarios,

5) the finding that the workload–accuracy tradeoff favors a higher resolution over
discretization order for runoff simulation in small or urban catchments.

The efficiency of the approach opens up new possibilities regarding ensemble sim-
ulations and high-resolution environmental modeling. The coupling of the surface
flow with the spatially distributed infiltration and interception component allows
the direct inclusion of green infrastructure by varying the parameters accordingly.
Detailed results help raise public awareness for flash floods by providing straight-
forward impact analysis at the scale of individual buildings and enable the analysis
of efforts to mitigate the effects of climate change in rural and urban settings.
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This thesis addresses challenges related to fluvial and pluvial flood hazard mapping
at large scales. Particularly pressing issues are identified and subsequently examined.
They include the robustness and accuracy of the numerical scheme used for solving
the shallow water equations (SWEs) in complex terrain, the efficiency of large-scale
flood inundation modeling and the integration of multiple model components in
flash flood simulations.
In Chapter 2, the first-order shallow water scheme developed by Chen and Noelle

(2017) is extended to second-order accuracy in regions where the solution is smooth.
Difficulties related to discontinuities in the bed source term are overcome by a
specialized “adaptive” reconstruction. The scheme’s second-order accuracy is verified
in numerical test cases, as is the scheme’s ability to preserve still-water and lake-at-
rest steady states. Compared to the popular hydrostatic reconstruction scheme of
Audusse et al. (2004), the proposed discretization of the SWEs offers an economical
approximation of the bed source term resulting in faster runtimes. In the case of
shallow downhill flows over steps, it provides more accurate results. The numerical
model is validated against measured data from laboratory experiments and historic
floods.
In Chapter 3, the presented scheme is applied to delineate inundated flood areas

for Austria (83,880 km2) at a resolution of 2 m. A river network of 33,880 km is
simulated in a distributed setup of 182 rectangular tiles. A computationally effi-
cient approach to maintain flood probabilities along the river network is proposed
by adjusting the discharges via additional source terms in the SWEs. The pro-
posed regional approach is an appealing alternative to ensemble simulations which
require numerous evaluations. Given a tiling of the region of interest, the flood
hazard model is integrated in the automation framework Visdom, which automati-
cally sets up the boundary conditions, executes the hydraulic simulation and carries
out post-processing tasks without the need for human intervention. For a 100-year
flood, 3532 km2 or 883 million wet pixels of inundated areas are simulated in less
than a month on 10 NVIDIA TITAN RTX graphics processing units (GPUs). The
inundated areas compare well with detailed local flood hazard maps, i. e. critical
success index (CSI) scores range from 0.61 to 0.74 across Austria’s regions. For all
of Austria, a CSI score of 0.7 and a hit rate of 83 % is achieved. Differences occur
in particular due to the proposed regional approach of adjusting flood quantiles and
due to small deviations in the digital terrain model (DTM).
In Chapter 4, the first-order accurate CN scheme by Chen and Noelle (2017)

and the proposed second-order accurate scheme are extended by model compo-
nents required for a comprehensive description of processes relevant for flash floods.
Interception and infiltration are modeled in a spatially distributed way, allowing
for different interception and infiltration parameters in every cell of the computa-
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tional domain. For urban scenarios, the popular Storm Water Management Model
(SWMM) is coupled with the rainfall–runoff simulator in an efficient interleaved
way. The integrated modeling framework is validated on a laboratory and a rural
test case. Model runtimes of the GPU-accelerated version are more than 1000 times
faster than the corresponding sequential version running on a single central process-
ing unit (CPU). Considering the tradeoff between workload and accuracy, results
indicate that the usage of the first-order scheme in combination with higher reso-
lution should be favored over the usage of the second-order scheme at comparably
lower resolutions. The integrated model is applied to the city of Cologne, demon-
strating the model’s capability to simulate cities of up to 200 km2 at a resolution
of 1 m.
Not long ago, resolutions of 25 to 100 m were considered characteristic for regional

flood hazard assessments (Moel et al., 2015). This thesis demonstrates the feasibility
of large-scale flood hazard mapping at a resolution of a few meters. The detailed
simulations allow for the estimation of damage for individual buildings and the
analysis of local small-scale alterations, e. g. of green infrastructure or protective
measures, at large scales.
Regarding the validation of large-scale models, observed inundation data is typi-

cally sparse in space and/or time. Thus a comprehensive validation, in particular of
the integrated flash flood modeling framework, requires further data. Nevertheless,
for scenarios where validation data is available, good agreement between reference
data and simulated data is found, thus underlining the predictive performance of
the developed methods.
Still, limitations exist in the proposed methods. The presented second-order scheme

is able to preserve quiescent steady states. However, an extension to more general
steady states, for example moving-water steady states accounting for friction, could
improve the model’s accuracy even further. For certain Riemann problems, the full
wave structure is not replicated, thus future work could focus on this issue.
To enable the simulation of even larger domains, multi-GPU implementations

could extend current limitations by distributing the work onto multiple GPUs in a
tightly coupled way where state variables are exchanged in every time step. Another
possible direction of future work are machine learning methods. Neural networks
that respect the given laws of physics described by nonlinear partial differential
equations, so-called physics-informed neural networks, provide computationally ef-
ficient surrogate models (Raissi et al., 2019).
In this thesis, flood hazards are assessed only for a single driver, e. g. either from

extreme river flows or rainfall. A combined evaluation of pluvial and fluvial flood
hazard model was done for the conterminous United States in Bates et al. (2021).
By combining the presented methods an extension to account for multiple drivers
seems like a comparably small step and a natural progression of this work.
Unfortunately, a thorough analysis of the uncertainty in the model cascade used

for the delineation of the inundated areas was beyond the scope of this work but
could be addressed in a future study. Traditionally, methods to quantify uncertain-
ties rely on Monte Carlo or ensemble simulations. They are also used to quantify
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consequences of uncertain predictions of future conditions including, for example, in-
creasing streamflow discharges or precipitation rates under a changing climate. Due
to the efficient computational techniques, the evaluation of ensemble simulations is
possible within reasonable time spans.
Overall, this thesis contributes to the recent research on flood hazard mapping at

large scales in several ways. First, a novel second-order accurate scheme is proposed
to accurately simulate water flow (Chapter 2). Second, a new approach to main-
tain flood probabilities across a large river network and an innovative automation
framework for inundation modeling are proposed (Chapter 3). Third, a comprehen-
sive assessment of heavy rain events is supported by the coupling of overland flow
simulation, of spatially distributed infiltration and interception processes, of cul-
verts and the sewer system (Chapter 4). Fourth, the combination of the proposed
second-order accurate scheme and the extensive use of GPUs enables the simulation
of large domains, e. g. entire cities or regions, at high resolutions with short model
runtimes (Chapter 3–4). The innovative methods developed in this thesis pave the
way for a new standard in flood hazard mapping with regards to accuracy and
computational efficiency.
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Appendix

A1 Sewer–surface coupling

Measurement location

Manhole

Inflow

Fig. 1. Geometric setup of the surface-sewer coupling test case.

In this section, we present simulation results to verify the sewer–surface coupling
against experimental data provided by (Rubinato et al., 2017). The setup consists
of a flume and a single manhole connected to a pipe. The surface bed is 4 m wide
and 8 m long with a slope of 1 m per 1 km. At the upper end, a hydrograph with a
constant discharge of 11 L/s is specified. At the outlet, critical flow conditions are
imposed. The manhole is located 2.5 m downstream of the inlet and has a diameter
of 0.24 m. The invert level of the pipe is 0.478 m below the flume bed. Manning’s
roughness coefficient is set to 0.009 s/m1/3 for both the pipe and the flume as both
are PVC. In the experiment, the pipe pressure and the surface level was measured
0.34 m and 0.35 m away from the manhole (Fig. 1).
First, we tested steady state inflow from the surface into the sewer system for

various prescribed surface discharges ranging from 5 L/s to 11 L/s. The simulation
reaches a steady state after 300 s. The simulation is able to accurately reproduce
the measured water depths and exchange flows (Fig. 2). With a mean absolute error
(MAE) of 0.19 mm and relative differences ranging from 0.1% to 4.3%, the accuracy
is excellent.
In the second test case, we simulated overflow from the sewer onto the wet flume.

The surface inflow is fixed at 11 L/s and the pipe inflow ranges from 2.2 L/s to
7.6 L/s. Again, the simulated water depths agree well with the measured water
depths with a MAE of 0.72 mm. The relative differences range from 3% to 4.8%
in this case. Unfortunately, SWMM can not extract the pressure head at an arbi-
trary location along the pipe, so instead we extracted the pressure head directly at
the manhole. The pressure head at the node is supposed to be lower than in the
pipe, as energy is dissipated in the transition from the pipe into the manhole. This
discrepancy is visible in Fig. 3b.
Overall, the coupled simulation correctly exchanges flows from the surface to

the sewer system and vice versa as simulated and observed values agree and are
comparable to results in the literature (Rubinato et al., 2017; Fernández-Pato and
García-Navarro, 2018).
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Fig. 2. Surface to sewer coupling, i. e. water is flowing from the surface into the sewer.
Simulated (red) and observed water depths (violet) over exchange discharge for a range of
prescribed surface flow discharges.
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Fig. 3. Sewer to surface coupling, i. e. water is flowing from the sewer onto the surface.
Simulated (red) and measured (violet) water depths (a) and pressure heads (b) over the
exchange discharges. The water depths show good agreement. The simulated pressure head
is extracted directly at the node and not 0.35 m away from the node as in the experiment
thus resulting in lower simulated pipe pressure heads.
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