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A B S T R A C T

Recent advances in neuro-imaging enable scientists to create brain network d
can lead to novel insights into neurocircuitry, and a better understanding of the
organization. These networks inherently involve a spatial component, depictin
brain regions are structurally, functionally or genetically related. Their visualiz
3D suffers from occlusion and clutter, especially with increasing number of no
connections, while 2D representations such as connectograms, connectivity m
and node-link diagrams neglect the spatio-anatomical context. Approaches to
2D-graphs manually are tedious, species-dependent, and require the knowledg
main experts.

In this paper, we present a spatial-data-driven approach for layouting 3D br
works in 2D node-link diagrams, while maintaining their spatial organizatio
produced graphs do not need manual positioning of nodes, are consistent (e
sub-graphs), and provide a perspective-dependent arrangement for orientation.
more, we provide a visual design for highlighting anatomical context, includ
shape of the brain, and the size of brain regions. We present in several case-stu
applicability of our approach for different neuroscience-relevant species, inclu
mouse, human, and Drosophila larvae. In a user study conducted with several
experts, we demonstrate its relevance and validity, as well as its potential for n
entific publications, presentations, and education.

c© 2022 Elsevier B.V. All rights r

n

neuro-imaging have enabled big brain initia-
rtia to create vast resources of brain data that
r insights into mental processes and biological
includes brain networks, representing the rela-

ifferent spatial locations in the brain of a certain

of network neuroscience, brain networks rep-
ions between different spatial locations in the
in modality. These networks can be on var-

l scales, ranging from brain region level [32],
-level synaptic connectivity [48], i.e., connec-
urons that can span across brain regions. The
divided into anatomical/structural connectiv-

effects) [47]. Understanding and visualizing these netw
crucial to investigate the cognition, memory, and ma
rological disorders, such as Alzheimer’s disease, auti
anxiety.

To relate brain networks to their anatomical context,
ical data are needed. They are not a single type of da
rather represent a diverse collection of reference tem
brain parcellations, and neuroanatomical ontologies. T
they form the common knowledge of how the brain is str
and how this structure can be referenced. A reference t
is in general structural imaging data that has been co
(e.g., via image registration) to a structural representatio
brain for a group of specimens or a species. A neuroana
ontology is the formal representation of knowledge ab
links), functional connectivity (statistical func-
cies), and effective connectivity (directed causal

anatomy of the brain [30] of a species. This relates foremost 31

to the composition of the brain, i.e., of which brain regions it 32
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ata-Driven Layouts of three different brain networks of species relevant in neuroscience. Nodes represent brain regions, color
ierarchical ontology. The background parcellation colors indicate major brain regions. Gray areas represent regions without
context. Edge opacity shows connection strength. Left: Strongest structural connections (top 2%) within the cerebral corte
sal view (from the top). Middle: Strongest functional connections (top 5%) within the cerebral cortex of a human brain, sagitta
t: Synaptic connections between exemplarily selected individual neurons (nodes) projecting from and to the mushroom body
al brain, transversal view (from the top). Neurons were assigned to brain regions (background parcellation) based on the
t synapses.

how these brain regions are subdivided (hierarchi-
y also include naming or color conventions. Brain
act as links between neuroanatomical ontologies
templates. In principle, a brain parcellation con-

ional annotation of every voxel in a reference tem-
, voxels can be associated with brain regions of an
visualizing anatomical context and relating voxel-
n-level data.

ons of brain networks are frequently used to show
uroscientific publications or for educational pur-
y are ubiquitous in literature because they quickly
formation [31]. One possibility to visualize rich

e abstract visualization methods such as multidi-
aling and scatter-plots [42]. Those methods lack
ontext, which could provide neurobiologists with
.e., intuitively knowing where to find certain brain
h anatomical regions are shown, and from which
rain. For this purpose, a common way to visual-
works is a 3D node-link diagram, with brain re-
d as spheres and connections rendered as straight
while occluded elements can be discovered via in-

igation in 3D visualizations. However, navigating
teractive 3D visualizations are not yet standard in
pers and naturally unavailable in printed media. A
ith 2D node-link visualizations is the visual clutter
hen many edges and nodes overlap due to the pro-
3D structure onto a 2D plane. Moreover, keeping

of the global network structure while visualizing
of detail becomes challenging given a finite dis-
ce the users can lose track of their current position
ting.

re, most tools for such purposes are trimmed to
ta of a particular species. For example, Neu-

graph was generated manually. Such an approach
time-consuming regarding multiple species, as eve
has a unique hierarchical definition of brain regions
problem concerning these regions is the selection reg
level of detail within the hierarchy.

In this paper we present an approach for the visua
3D brain networks in 2D space that inherently preser
organization and provides spatial context for orienta
we use node-link diagrams as the graph visualization
for its common usage in neuroscientific visualizatio
these diagrams, we present the connectivity betwee
gions, which we layout based on anatomical proxim
nodes that are anatomically close are also close in
Furthermore, we render a brain parcellation in the b
by introducing a visual design to optimize spatial o
Exemplary visualizations of three brains of different s
be seen in Figure 1.

While individual parts of our approach are not nov
own, particularly using spatial information for graph
[45] and providing group-level information for 2D
Voronoi tessellation [49], we introduce a new conce
these techniques for the visualization of brain netw
spatial organization. Specifically we make the follow
contributions:

• A novel method for generating Spatial-Data-D
outs for neural networks of multiple species an
tives. The proposed method overcomes the nee
ous solutions to manually define brain region re
straints to generate anatomically feasible layou

• Visual designs providing a consistent spatial con
user to ease orientation and visual comparison o
brain networks.
visualizes the brain of the common fruit fly
elanogaster, where the anatomical layout of the

• A qualitative study that shows that Spatial-Data-Driven 68

Layouts allow neuroscientists a faster overall understand- 69
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network graphs compared to traditional brain
sualization techniques.

rk

rs, an abundance of toolboxes have been pub-
39] that offer computation and visualization of
nectivity data. While they provide a rich set
mathematical methods, their visualizations are
often require experience in Matlab or Python
ntrast, visualization methods support the pro-

plex information, so neuroscientists can focus
g the data rather than handling it. This section
ew on visualization tools for connectivity data
natomical context with respect to our method.
ay to visualize brain networks in neuroscientific

3D node-link diagrams [6, 38, 55]. In these
ork connections (edges) are often rendered as
arrows between spheres representing brain re-
ross a 3D anatomical representation of the brain
ientists to orient themselves. One example is
et Viewer [54], a graph-theoretical network vi-
box to illustrate macro-scale human brain net-
nd-stick models. It displays combinations of
e, nodes, and edges from multiple perspectives
or coronal) and allows the user to adjust dis-
like color and size of the network elements. Al-
oach is intuitively understandable, visual clutter
he amount of edges and nodes due to the linear
3D to 2D. With our method, we overcome this

pting the graph layout based on spatial relations.
agrams are also used by the Connectome Visu-
[29], which offers a matrix (heatmap) and a cir-
tion [24] of the network in separate views that
each other. To counteract visual clutter, these
lection/highlighting of nodes and edges, so one
pecific parts of complex networks. Bezgin et
loyed user-selected nodes to visualize only rel-
rks in the Macaque monkey brain. In this case,

om a hierarchical ontology can be chosen to de-
ections should be shown as arrows overlaying
y, i.e., a 3D node-link diagram without depict-

Another example is BrainTrawler [18], a task-
ed framework that incorporates visual analytics
ore heterogeneous neurobiological data, includ-
context. It enables neuroscientists to analyze of
functional characteristics of brain networks in
ked 2D-slice views and 3D network visualiza-
s a visual-query based interaction scheme for
raphs. Similar approaches using query-guided
exploring electron microscopy stacks has been
eyer et al. [7, 8] in the ConnectomeExplorer.
euronal connections can be queried, and visu-
linked views. These views comprise a 3D vol-

ering, a 2D slice view, connectivity graphs, a

these interactive 3D network visualizations with linke
[7, 9, 18, 24] contribute spatial context and enable the
focus on relevant sub-networks. Nevertheless, navigati
approaches cost time, require domain expertise, and a
rally unavailable for printed scientific papers. This is
issue with our method, since its output is a static figu
inherent spatial information.

Although the 3D spatial representation of networks p
anatomical context, 2D node-link diagrams with flexi
outs are better suited for comparing connectivity[4]
tifying modules (well-connected groups of nodes) [3
this reason, BrainModulizer [34] uses a linked pres
of anatomy in 3D, and 2D networks to enable neuros
to interactively explore functional connectivity. Spatia
spondence is indicated via color coding of hierarchic
ganized brain modules, but can be also established via
ing/selecting nodes in one of the views. Analogous to
Modulizer, BRAINtrinsic [11, 12] aimed to explore br
nectivity with node-link diagrams based on network
ogy. Instead of arranging nodes, they mapped the
to a topological space by taking the networks intrinsic
etry into account. For this purpose, they performed
sionality reduction (multidimensional scaling, isomap
distributed stochastic neighbour embedding) on structu
functional connectivity data. In a 3D view that shows
work as a node-link diagram, one can interactively sw
tween anatomical and topological spaces, show/hide pa
brain regions and compute network measures. This a
has been taken further in the NeuroCave visualization
[28], optimized for virtual reality environments. Netw
shown in a coordinated view, so the network is visible i
3D anatomical space and a topological space simulta
These approaches combine the advantage of 3D spa
resentations with the flexibility of 2D node-link diagr
outs. However, the spatial context needed for the 2D
link diagram is provided via interaction with a linke
which is again not available for printed scientific pap
not yet standard for their electronic versions. With
Data-Driven Layouts this can be avoided, since spatial
is not only an intrinsic part of the visualization, but als
graph layout.

Spatial relations and anatomical meaning can be in
into an abstract visualization directly while avoiding oc
and clutter simultaneously. For example, Jianu et al [2
planar projections of fiber tracts generated by Diffusion
Imaging to visualize neuronal connectivity as bundles
single bundles can be highlighted for visual distinctio
endpoints of these bundles project directly onto a silho
the brain, providing spatial orientation. Due to a lack o
and annotations, it is not possible to identify individu
regions. An abstract visualization was proposed by Mc
al. [33], who positioned the nodes of a graph using th
mated anatomical labeling (AAL) brain atlas, discardin
the three coordinates. The nodes are grouped by the hem
(left, right) and their corresponding brain lobes. Minimi
ing the hierarchical structure of segmentations,
istical views (histograms, scatterplots etc). All

overlap is achieved by using the method by Misue et al. [16]. 111

The color of the nodes is determined by the lobe it belongs 112
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radius is proportional to the number of incident
node. Edges are filtered and bundled in a similar
described by Holten and Van Wijk [23]. Visual-
er- and intrahemispheric connectivity is separated
tter in interhemispheric connectivity. Another ap-
ses edge bundling was introduced by Böttger et
bundled edges within a brain parcellation to vi-
s of functional connections between brain areas.

bundling reduces visual clutter caused by edges,
reduce the clutter caused by overlapping nodes
to 2D projections. Our Spatial-Data-Driven Lay-

e-directed layouting to avoid overlapping nodes,
luttering is reduced by using edge routing.
rnative to visualize the anatomical context in addi-
link diagrams, the context can be also integrated
the graph layout. What are known as “anatom-
are abstract 2D representations of brain regions,
rain anatomy is flatted to a 2D space. NeuroMap
an interactive two-dimensional graph of the fruit
nd its interconnections in the form of a circuit-
diagram. Anatomical context is provided by par-
canvas into compartments that form an abstract

n of actual brain regions. For this purpose, fixed
t positions that have been manually defined in col-
ith neuroscientists are used to depict the overall
the brain. The visualization can be interactively
dding new connections from additional data, fil-
ighting, or layout adjustments. A similar, static,
approach has been used by Caat et al. [49] and Ji
hich maps functional networks derived from elec-
graphy (EEG) to a planar projection of the human
oid cluttering, only the coherence between func-
i.e., network modules, units are shown in a single
corresponding functional units of the EEG elec-
icated by colored Voronoi tessellation in the back-
downside of these approaches [46, 49] is the man-
is required to create these layouts. Hence, they are
e-consuming regarding multiple species, as every

unique hierarchical definition of brain regions. We
s limitation by proposing a data-driven approach.

ents

long-term collaboration with neurocientists work-
l networks from humans, mice and drosophila

r, we identified the following requirements for a
nerate Spatial-Data-Driven Layouts of brain net-

ically Feasible The graph layout should intrinsi-
eserve the spatial organization of the network, i.e.,
elated to brain regions that are anatomically ad-
emain close in the graph layout. The layouting
also deliver stable, anatomically feasible, layouts
ial networks, i.e., networks spanning only a part of
n, to facilitate comparability of these networks.

manual arrangement of data an extensive task.
the method should be able to handle the layo
data-driven way, i.e., without manually defined
strictions on the positioning of nodes.

(R3) Species-Independent Each species has a un
anatomy and parcellation, so the method shoul
dependently of these differences.

(R4) Perspective-Independent Different perspect
transversal (from the top) and sagittal (from
should be possible to provide orientation, i.e.,
ing the perspective shape of the brain.

(R5) Providing Anatomical Context The final vi
should provide sufficient context to facilitate th
cal localization of a brain network.

(R6) Adaptable with regards to Anatomical Deta
be possible to highlight the anatomical detail o
according to information density, (i.e., show mo
ical detail for highly connected regions, or wher
with more than one node per region exceeding
lution of the hierarchical parcellation), or by th
anatomical size, i.e., where anatomical detail is
tributed over regions with equal size.

(R7) Consistent in Spatial Organization with r
Changes The layouting should be stable c
changes in the selection of visualized network
brain regions, and therefore, the mental map of
scientist be retained.

(R8) Overlap-efficient Overlap of nodes and edges
minimized.

4. Methodology

When using graph layouting algorithms, spatial
and orientation get lost if such information is not rep
the graph data. We utilize this presumed problem by
a multi-stage algorithm, which facilitates connectivi
ing anatomical proximity of each brain region (Pa
derived Connectivity) for graph layouting, and the a
nectivity of interest for visualization (Rendered Con
This means that anatomical adjacency of regions a
shape of the brain is reflected in the layout.

4.1. Input Data

Hierarchical Brain Parcellation: This data rep
overall information of the species-specific hierarchi
lation of the brain. This parcellation hierarchically
a 3D reference space into brain regions, where eac
gion is defined via 3D coordinates. These can be eit
gions’ voxel-level representations on the space, or, i
riven The vast number of connections and brain
tions, i.e., different regions, within the brain makes

able, the brain regions’ centers of mass (however the center is 102

defined). Furthermore, for each region it includes a name, an 103
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Hierarchical Representation of Brain Regions of a mouse
t level represents a voxel-level reference space, while
rise brain regions.

r-code, the region’s size, and a list of its sub-
ata can be typically derived from brain refer-
h as the Allen Mouse Brain Common Coordi-

k [51], the Allen Human Reference Atlas [14],
rain platform [3]. A scheme of the Hierarchi-
ion of Brain Regions consisting of the higher
of the Allen Mouse Brain Common Coordinate
be seen in Figure 2.

: A brain network of interest is given as graph
ing neural elements at brain region level, and
ghts indicating and characterizing the connec-
these nodes, for example, functional resting-
ty from the Human Connectome Project [50]
nectivity from the Allen Mouse Brain Connec-
(see mouse and human usage scenarios in Sec-
). In case of availability of more fine grained
ormation there can be more than one node re-
region, for example, neuron-to-neuron synaptic
ta from CATMAID [41] (see Drosophila usage
ion 5.3).

for Spatial-Data-Driven Layouts consists of
steps, depicted in Figure 3. In principle, the
network are projected onto a 2D plane, depend-
ed perspective. In case the brain network does
hole brain, additional nodes are added to repre-
anatomical context (Step 1, 2, 3). Then, force-

ng based on Parcellation-derived Connectivity
t the initial 2D node projection so that nodes
ly close in the anatomical reference space are
e 2D graph (Step 4). To enforce an even dis-
es, another force-directed layouting step based
angulation is performed (Step 5). In the back-
raph, a colored Voronoi tessellation is added to

y and overall shape (Step 6). Finally, the orig-
rk’s edges are rendered. (Step 7).

Parcellation-Derived Connectivity (Figure 3 (1)) that re
the closeness of brain regions in the anatomical referenc
We derived this measure from the parcellation of brain
on a 3D reference space by computing the number o
bouring voxels (6-connectivity) between brain region
all hierarchy levels. We normalize the measure by t
number of voxels of the respective two brain regions
wise the measure would directly depend on the size o
gions. The localized nature of this connectivity (only
bouring brain regions are connected) enables graph layo
retain these local structural relationships between brain
Alternatively, or in case no parcellation is available, i
possible to approximate this measure with the recipro
tance between region centers (however this center is d
which leads to inferior results. For details of the effec
layout see Section 5. If more than one node per brain r
included, i.e., the original network is more fine grained
given Hierarchical Brain Parcellation, we add addition
with the maximum weight between to represent their a
cal closeness.
Step 2 - Graph Completion: Brain networks are g
anatomically incomplete, i.e., not covering the whol
Thus, to include the missing anatomical context (R1, R
into our layouting and the final graph representation,
“Shadow Nodes“ covering the parts of the brain not be
in the original network (Figure 3 (3)). These additiona
will be used only for layouting process, but are not rende
a consequence, they fill space in the graph layout, but ar
wise invisible. This empty, used-up space represents th
ing anatomical context, where the presence of these n
only indicated by a gray background coloring (hence th
“Shadow Nodes“). In Figure 3 (Steps 2,3,4, and 5) thes
are shown in gray to help understanding the method.

The selection of the hierarchy level of the parcellati
for the Shadow Nodes is one of the degrees of free
fluencing the layout and the final visual appearance
background. Depending on how much context is desi
Shadow Node Ratio (the area that the rest of the brain w
for the layouting and background coloring in relation
brain network nodes - see Step 6 - Background Parce
can be adapted:

• Shadow Node Ratio = 0: only brain network nodes
layouted and used for background coloring

• Shadow Node Ratio = 1: The hierarchy level
background context will set to a level, where the
Nodes, i.e., the rest of the brain, will cover the sa
(on the 2D canvas) as brain network nodes.

• Shadow Node Ratio = N: The hierarchy level for th
ground context will set to a level, where the
Nodes, i.e., the rest of the brain, will cover N-ti
area (on the 2D canvas) as brain network nodes.

The effect of this parameter can be seen in Figure
consequence, the overall shape of the visualization is s
rocessing: For producing anatomically feasi-
) in a data driven way (R2), we introduce a

served even for sub-networks that do not cover the whole brain 92

(R5, R6). 93
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l steps to generate spatial-data-driven layouts. Step 1) Preprocessing the Input Data Preprocessing a Hierarchical Representa
rate Parcellation-derived Connectivity which will be used in later steps to layout a brain network. Step 2) Making the Graph A

he brain network does not cover the whole brain, the missing anatomical context is added as Shadow Nodes, covering brain
he original brain network (gray). Step 3) Initialization: Projecting the 3D positions of the brain network regions as nodes
he desired perspective (here: transversal view). Step 4) Layouting: Layouting the graph based on the Parcellation-derived
irected layouting algorithm. Step 5) Triangulation: To evenly distribute the nodes, Delaunay-triangulation between the nodes i
ion is used as edges to perform another force-directed layouting with the results of the previous step as initialization. Step 6)
arcellating the background for anatomical context and providing an overall shape. A Voronoi tessellation is used, where cells th
regions are grouped together [53]. Step 7) Network Rendering: Rendering the nodes and edges of the brain network (Rendered C

hierarchical parcellation is not balanced by the
s anatomical size, it is not possible to choose a hi-
that results in a number of Shadow Nodes that fit

Node Ratio. Therefore, the hierarchy is traversed
ion size, so that every Shadow Nodes covers an
ical space/region size.

ialization:
g (Section 4.2, Step 4 - Layouting) would be per-
random initial position of the nodes on a 2D

esulting representation would still resemble the
to the construction of the graph in Step 1 - Initial-

tep 2 - Graph Completion of our method. Hence, a
lization would lead to tilted, turned, and deformed
common standard views aligned to the main axes

l interviews, domain experts expressed that the ori-
ucial for the acceptance of the visualisation. Other-
uld not sufficiently grasp the spatial structure after
ing at the graph (R4).
ttal (from the side) and transversal (from the top)
ews used in neuroscience and provide neuroscien-
initial orientation. We approximate these views by
jection planes aligned to the respective main axes
s initialization for layouting.
he user’s desired orientation of the final graph, we
e (e.g., X-Y plane or Y-Z plane) and orthogonally
D positions of the brain network nodes on it to
tial node positions for the layouting (Figure 3 (2)).

we performed the layouting only on one side, and
the nodes of the respective other side’s brain regions
displacement. This mimics a form of perspective
and enables the viewer to always find the left/right v
a brain region at the same distance and angle from e

Step 4 - Layouting: We layout the graph bas
Parcellation-derived Connectivity computed in Ste
processing using a force-directed layouting algorithm
R1, R2, R7 and R8. Here we used CoSE-Bilkent [15
ing on the occlusion/overlap of nodes in Step 3 - Ini
the forces applied by the layouting algorithm need
ually adjusted. Which forces these are, depends on
algorithm. For CoSE-Bilkent this is further discuss
tion 4.3. The effect of parameter adjustment is demo
Supplementary Video 1. In the transversal view for
brain, weak forces are enough due to the flatter co
of the regions (Figure 3 (4)). Parameters for the sa
require stronger values, to pull regions adjacent to
together and push distant regions further apart.

Step 5 - Triangulation: Although the previous step
imize node overlap, it is not guaranteed to lead to
at all. To counteract this, we want to drive the layo
an even node distribution, i.e., nodes being equidist
other. Therefore, we generate edges based on a tri
between the nodes (Figure 3 (5)) (R8) and perfor
directed layouting again.

Step 6 - Background Parcellation: We are parcellin
oring the background to generate anatomical context
tal view, where, due to the brain’s symmetry, the
versions of brain regions would directly overlap,

First, all 2D nodes (real network nodes and shadow nodes) 59

on the 2D canvas are parcelled via a Voronoi tessellation. Nat- 60
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noi tessellation would parcel the whole rectan-
o limit the tessellation to an area that resembles
round the nodes, we draw a convex hull with
g around the nodes. Along this hull, we place
at will be only considered by the the Voronoi
setting the cells of these virtual nodes to in-

aining cells of the network and shadow nodes
shape (Figure 3 (6)). Then, we group the cells

on background regions. To identify these back-
a recursive algorithm is used, that, given a user-
of Background Regions as parameter, traverses
to find either brain regions higher in the hier-

lar anatomical size or similar number of edges.
ackground can be either focus on anatomy (size
), or provide context based on the information
r of edges) (R6).
e perception of orientation of the domain ex-
ct to the network of interest, we color the cells
tion by their associated brain regions’ colors
he user their identification. Figure 4 shows this
ifferent Numbers of Background Regions based

ze. Background regions are further indicated by
nd the groups/background regions in the back-
3 (6)). Note that in Figure 4, 5 and 6, we colored
round (even the Shadow Nodes) to demonstrate

ackground drawing. Otherwise, the background
o not have connections, i.e., are not part of the
w Nodes), are colored in gray to not catch the

urther orientation for the transversal view, we
tance that the brain is typically divided into two
ere, we highlight borders between cells of the
mispheres in bold black, which leads to a mid-
ng these two parts of the brain.

k Rendering: Drawing the brain network (Fig-
e, we label network nodes at region level with

e, including its brain hemisphere (L as prefix
prefix for right) to add anatomical context at

R5). Here we use common acronyms often in-
ontologies, as the full name would not fit into
colour coding is derived from brain reference
, where every brain structure is assigned a dis-
ed on its hierarchical level in the brain ontology.
rks whose resolution exceeds the Hierarchical
ion, i.e., the network’s brain regions are more
n the parcellation, multiple nodes per brain re-
with similar coloring and rendered adjacent.
f rendered edges/links is representing the con-
th (e.g., structural, functional or genetic) be-
using weak connections to appear more trans-
at due to clutter, we only render the strongest

the figures of in this paper. Hence, some nodes
the networks, i.e., they have connections, are

ut edges. Other alternatives, such as thickness
ses more clutter, especially with growing num-

Fig. 4. Effect of different Number of Background Regions on th
visualized in the background of the brain network (strongest s
connections in the whole brain), as described in Section 4.2, Step
ground Parcellation. A background region is represented as par
similar color and enclosed by an outline.

organic edge layouting) are shown in the user study (
ure 11 and Supplementary Material).

4.3. Implementation

We used the graph-drawing library Cytoscape.js [1]
implementation of a interactive visualization. Here, we
the CoSE-Bilkent algorithm [15] for layouting in Step
outing of our method for its speed and usability. The
limitation to use different force-directed algorithms.
Bilkent represents merely one approach to show tha
directed layouts can be used for Spatial-Data-Driven L

For our implementation, we omitted the nested
ing/compound layouting functionality of CoSE-Bilken
it produced rectangular compartments which interfered
shape/outline of the layouted graph. We investigated th
of the algorithm’s parameters, and selected three (nod
sion, edge length and edge elasticity) that had the stron
fect on the layouting. While node repulsion acts as
force between nodes, edge length and edge elasticity
how nodes are pulled together based on Parcellation-
Connectivity. We created a prototype of an interactive
ization, where these parameters can be iteratively ada
sliders in real-time, so that one can find a trade-off b
mapping spatially close nodes in the anatomical referen
to spatially close positions in the 2D graph, and keep
overall shape of the brain. An example of how the l
reacting to parameter changes can be seen in Supple
Video 1 for full and partial networks.

5. Usage Scenarios
dge bundling or different edge layouts (R8) can
er reduce this, several of them (orthogonal and

We created usage scenarios on three different species (mouse, 86

human and Drosophila) relevant for neuroscience to showcase 87
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a different Shadow Node Ratios on the context visualized in
of brain network (structural connectivity within the thala-

bed in Section 4.2, Step 2 - Making the Graph Anatomically

asibility (R1) of our approach, its general applica-
rent brain architectures (R2, R3) and for different

(R4). The effectiveness of our proposed visualiza-
erception of brain networks by neuroscientists was
a separate user study in Section 6.
rain architecture, we created Spatial-Data-Driven
cting common views in neuroscience (sagittal and
and different ways to create Parcellation-derived
, i.e., distance or neighbourhood based (R2, R3,
alitatively evaluate the anatomical feasibility of
layouts (R1), we produced visualizations that re-

res from neuroscientific publications to show that
can be used to present this information in a sim-
omitted a numeric, quantitatve evaluation based

ce of spatially-close nodes in the 2D graph. Here,
aluate the closeness of nodes in the resulting 2D
ir spatial closeness in 3D, which already depends

of the force-directed layout algorithm and the spa-
in 3D (Parcellation-derived Connectivity), hence

aluate the force-directed layouting algorithm, and
ach.

rain
mouse brain is a model organism widely used in
brain connectivity [38, 17, 35]. To provide a com-

y and reference space, the Allen Institute released a
rdinate framework on a cellular level resolution for
alization, and integration of multimodal and mul-
ts [51]. It does not only have a voxel-level repre-
rain regions, but also a brain region ontology, i.e.,

al Representation of Brain Regions. We used this
e two types of Parcellation-derived Connectivity:
of neighbouring voxels (6-connectivity) between

The effects of using these connectivities on the Spa
Driven Layouts can be seen in Figure 6. Here, we
between the sagittal and transversal view. As one
Figure 6, 2D projection, the mouse brain is rather
transversal view, with rather few brain regions occl
ers, in contrast to the sagittal view. Therefore, for th
sal projection, the effect on the spatial-data-driven la
limited. The effect increases with the size of the n
can be seen in the distribution of 997 brain region
Figure 8.
Results: To verify if Spatial-Data-Driven Layou
used to produce figures for neuroscientific publicatio
imagined an artistically drawn brain network sugges
domain experts. Figure 7 shows the brain reward c
the mouse brain as depicted by Russo et al., Figu
For this figure, we use structural connectivity [35
a brain network between brain regions that corresp
ones given in the paper [40]. Note, that the structur
tivity and the dopaminergic circuitry do not represen
modality, hence, it can only be seen as an approxim
as a consequence, not all connections are similar
We investigated then if the brain regions are correc
ing with the Interactive Atlas Viewer [2]. The only o
consistency was the distance between the lateral habe
red, LH) and lateral hypothalamus (red, LHA), whose
gions (thalamus and hypothalamus) are positioned n
other. Closer inspection revealed, that the LH lies a
rior part of the thalamus, while the LHA lies at the
of the hypothalamus. Hence, both regions are not adj
are indeed positioned correctly. The visual appeal
agram was then tested in a user study, which can b
Section 6.

5.2. Human Brain

Setup: Similar to the mouse brain, the Allen Institu
a reference atlas, the Allen Human Reference Atlas [1
vide a common reference space for the human brai
trast to the mouse brain, the atlas provides only high
histology 2D slices, not a common coordinate framew
rive the voxel-level representation of brain regions.
neighbourhood-based Parcellation-derived Connect
not be evaluated in this scenario. We use data fro
previously published by Hawrylycz et al. [22], whic
3D positions of samples labeled with Allen Human
Atlas brain regions to create the brain regions’ reci
tance between them (edges in Figure 6, 2D projecti
that there have been recent releases of voxel-level co
ordinate frameworks with region-level annotations [
would be also suitable for applications in the future.

We visualized the effects of using these connectiv
Spatial-Data-Driven Layouts similar to the usage s
the mouse brain (Figure 6). Similarly, the transvers
ready showed promising results when layouting wi
nectivity (Figure 6, No Connectivity), mainly because
man cortex’s parcellation in frontal, lateral and poste
(shown as edges in Figure 6, 2D projection), and
l distance between their center-of-gravity.

Results: Again, we re-imagined an artistically drawn brain net- 89

work suggested by domain experts to showcase the applicabil- 90
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rcellation-derived Connectivity on the Spatial-Data-Driven Layouts of different species and views. Columns show species (mouse
rvae) and view (sagittal and transversal), rows the 2D projection of Parcellation-derived Connectivity (2D Projection), layouti
nectivity at all, i.e., without Step 4 - Layouting of the approach (No Connectivity), layouting with the reciprocal distance betw
tion-derived Connectivity (Distance), and layouting using the number of neighbouring voxels (6-connectivity) between brain r
d Connectivity (Neighbourhood). There was no voxel-level definition of brain regions matching the Hierarchical Representation
for human, hence the layouting is missing in the last row. Edges for the 2D projections represent the neighbourhood-based Par
ty for mouse and Drosophila larvae, and distance-based for human.

of brain reward circuitry in a mouse brain as de-
et al., Figure 1 [40], with and without colored con-
ns in the paper figure correspond in the following
es’ region = this figures’ regions as node labels):
frontal cortex = PL/prelimbic area, NAc/nuclues ac-
ucleus accumbens, Amy/amygdala = BMA/basomedial
s, Hipp/hippocampus = HPF/hippocampal formation,
ula = LH/lateral habenula, LHA/lateral hypothalamus,
ental area, and LDT/laterodorsal tegmental nucleus

ata-Driven Layouts for neuroscience publica-
t al. (Figure 6, green) [20] published a fig-
exinergic neuron projections originating from
us in the human brain. We sought to re-
formation shown by Gotter et al. with our

riven Layouts by visualizing the strongest out-
ns (top 20%) from the hypothalamus on a hi-

Fig. 8. Effect of Spatial-Data-Driven layouting on node distrib
larger networks (997 nodes). The left side shows a transversa
jection, the right side a Spatial-Data-Driven layout of the same
Background, labels and edges are removed for the clarity of the l

ity was available, we substituted functional resting-st
nectivity from the Human Connectome Project [50]
led to a surprisingly accurate overlap of the papers cir
cording to our domain experts: The VTA/ventral te
area, ACB/nucleus accumbens (equals NAc/nucleus
bens), MBRa/midbrain raphe nuclei (covering DR/dors
nucleus), and the MBRF/midbrain reticular formation
ing PPT/pedunculopontine tegmental nucleus) are am
strongest connections. LDT/lateral dorsal tegmental
and LC/locus ceruleus were not covered in the data by
region level covering the majority of the pa-
ons (Figure 9). Since no structural connectiv-

lycz et al. [22], but their parent region PTg/pontine tegmentum 20

(including 20 other subregions) was still within the strongest 21
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rgic neuron projections originating from the hypothalamus
brain. Brain region hierarchy level was selected to cover
f brain regions depicted by Gotter et al., Figure 6, green
20% of outgoing functional resting-state connections of the

nnections (not shown in figure). Closer inspection
egions’ positions with the Interactive Atlas Viewer
consistency with brain anatomy. Obvious disloca-
e split within brown regions (limbic lobe) can be
the distance-based Parcellation-Derived Connec-
ugh they are adjoined, their centers of gravity are
due to their anatomical structure. Neighbourhood-
ectivity has the potential to compensate this issue,
n in the mouse usage scenario. Visual appeal of
s again tested in the user study (Section 6).

ila Larval Brain
eural circuits of the common fruit fly Drosophila

r are studied to investigate the generation of com-
r. Especially their larval stages are examined
their brains are with 10,000-15,000 neurons still
mpact, and therefore less complex. Visualiza-

vidual neurons and neuronal circuits are subject
earch [48], but their representations in relation to
ontext require manual definition and annotations
lve this problem with Spatial-Data-Driven Lay-
k a hierarchical definition of compartments/brain

in the Drosophila community [21], and cre-
urhood-based (edges in Figure 6, 2D projection),
l distance-based Parcellation-Derived Connectiv-
to the mouse usage scenario. As research on the
rain focuses on individual neuronal circuits rather
gions (e.g., Saumweber et al. [43]), we sought to
ion-level visualization we used in the mouse and
scenario with neuron-level data. As showcase, we

N-KC-MBON circuitry published by Schleyer et
ure 2), and extracted in close collaboration with
rain experts the neuron-to-neuron synaptic con-
from CATMAID [41]. We added these neurons as

r respective compartments as child nodes (Step 1)
g the Input Data), and encoded the synapse count

as connectivity.
d transversal views can be seen in Figure 6. In
e other scenarios, we had to omit Step 5 - Trian-

Fig. 10. DAN-KC-MBON circuitry as published by Schleyer et
ure 2) in the mushroom body (red), inferior protocerebrum (
superior lateral protocerebrum (green). Solid arrows repre
counts between the neurons (nodes), dashed lines between
ron nodes (in multiple regions) indicate that it is actually the
present in these three regions.

brain with its elongated, slim caudal extension (tho
glion in green and abdominal ganglion in orange) w
been distorted otherwise. As a consequence, Figure 6
nectivity) shows a nice overall shape, but cluttered
lapping nodes in the protocerebrum, especially in the
(yellow). This effect was compensated when using th
based Parcellation-Derived Connectivity (Figure 6,
The neighbourhood-based Parcellation-Derived C
(Figure 6, Neighbourhood) led to even better resu
sagittal view, as it produced a more uniform distribu
abdominal ganglion (orange region).
Results: The result of re-imagine the showcase ca
in Figure 10, with the DAN-KC-MBON circuitry in
room body (red), inferior protocerebrum (brown),
rior lateral protocerebrum (green). The solid arrow
synapse count between the neurons, the dashed line
DAN-i1 nodes (in multiple regions) indicate that it
the same neuron present in these three regions.
nodes displaced adjoined regions spatially correct.
to our domain experts, this is a good first step tow
senting neuron-level circuits with anatomical contex
enhancements, e.g., adding markers for input and o
tions [43], i.e., sensory input, or motor output, in co
with interactive information visualization (e.g., show
formation flow on mouse-over) could make this a va
for circuit research.

Due to the differences of the data used in this stud
spect to resolution (neuron vs region level) and scale
nectivity vs whole brain connectivity) in contrast to
and human, we did not perform a separate user stu
species.

6. User Study

We performed a user study to investigate the effec
our proposed layouting method and visual design o
ception of network visualization by domain experts.
tive was to prove the usefulness of Spatial-Data-D
outs for brain network visualization and to receive
for future development. Ideally we wanted to includ
layouting, which is used to generate a more even
f nodes. The unique form of the Drosophila larval

scientists as possible, to get a wide range of opinions and to 79

be robust to individual point of views. Hence, we designed a 80
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tionnaire which was sent out to scientists work-
etworks, including computer scientists, compu-
sts/bioinformaticians, and neuroscientists. The
re is included in the supplementary material.

gn

our approach was conducted on mouse and hu-
orks. We created a web-based questionnaire to
erformance and user experience [25] for each
ly, whereby domain expert were encouraged to
e studies of the species for which they felt famil-
rder of questions was randomized to counteract
t.
included whole brain and partial networks in
sversal views. To compare our results, we also
ations with and without layouting, i.e., brain

ut our approach. Furthermore, we evaluated also
brain regions’ coloring by including gray-scale

estionnaire consists of four parts:

g Nodes/Connections: The first part was to
e efficiency of the layouting in providing orien-
refore, we tested the viewers by checking how
an find specific nodes and connections in the
pared to graphs without Spatial-Data-Driven
Here, we measured the time how long it takes
the node with the strongest connection to a
in a whole brain network. This task was per-
different transversal views, with and without

atial-Data-Driven Layouting, and different re-
his experiment, the question order was random-
vent unexpected learning effects.

ion of Anatomical Context: Here, we showed
partial brain networks covering different parts

n. We varied different parameters, such as the
ode Ratio (Section 4.2, Step 2 - Making the
tomically Complete) and the Number of Back-

gions (Section 4.2, Step 6 - Background Par-
then we asked the participants to rank them by
how well they are suitable as paper figures and

onal purpose based on a Likert scale. Further-
ompared artistically drawn figures from neuro-
ublications [40, 20] to similar figures generated
proach.

alization: Here we experimented with differ-
of edge rendering. Participants were asked to
ent numbers of edges (top 10%, 20% or 30% of
as well as different edge routing layouts (direct
anic edge routing with varied parameters, and
edge routing, see Figure 11), based on clarity

lity for publications.

hic Data: The last part includes personal ques-
ding the current position held by the participant,

Fig. 11. Edge routing algorithms that were used in the user stud
tion to direct arrows.

The major results of the user study can are shown in
and are summarized in the following subsections.

6.2. Results

We recruited eight participants for the mouse use
(three female and five male participants), and six part
for the human (three female and three male participant
vestigate the feasibility of the presented visualization.
ticipants of the human user study took also part in the
user study. All participants are at a senior level (postdoc
searchers principal investigators) with domain knowled
participants have worked and are familiar with the Allen
Brain Common Coordinate Framework [51] and three
Allen Human Reference Atlas [14].

Part (S1) consists of three configuration settings o
work covering structural connectivity over the whole b
cluding (a) directly projected layout, (b) Spatial-Data
Layout without background, and (c) Spatial-Data-Driv
out with background. There are in total six clicking q
(for each layout, we prepared two questions) and meas
task completion time. Only one participant made a
which happened when the graph was synthesized direc
the projection (a). It is straightforward that the task com
time of (b) is shorter than (a), due to the few occlusion
In case (c) for the mouse study, the time increased co
to (b), which may be because the colored background
another layer of visual complexity. This was also menti
the participants that the concatenation of strong color
it difficult to read the connectivity of entities in the d
For the human study, the completion of (c) was as fas
This might be an effect of the more spherical form of the
brain relative to the mouse brain. Here, a transversal pr
leads to higher deformation of the anatomical structure
higher displacement of the nodes. Hence, the backgrou
text supported the spatial orientation to find nodes/conn
rather than to divert the viewers focus.

In Part (S2), we tested different settings for the visua
consisting of four questions with different hierarchy lev
questions with different levels of background detail (Nu
Background Regions), three question with varying size
ground context (Shadow Node Ratio) for sub-networks,
ditional questions regarding coloring thereof. For the d
hierarchy levels, we tested sagittal and transversal vie
pertise, familiarity with the brain-region ontol-
blindness, and gender.

the three configuration settings described in Part (S1). On av- 96

erage, six participants considered our approach most visually 97
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coarse, middle and detailed levels, respectively.
ber of Background Regions, they preferred rather
to represent major brain regions.

e participant preferred to read sub-networks with
kground, i.e., highest Shadow Node Ratio, while
roscientist with color weakness preferred simple
without background. In comparison to full color
n out of eight participants prefer the mixture of
r background. The helpfulness of the background

rientation was considered as for the mouse brain
le between 1 (poor) and 5 (good) and was consid-
her with 4.58 for the human brain.

wing the graphs in Figure 7 and Figure 9, where
ed a hand-crafted image from an existing work
our approach, we received an average ranking of

or and 5 is good) for the mouse and 3.33 for the
slightly lower score for human might be either due
mber of participants (no significant difference), or
he higher complexity in terms of node and edge
uman figure.

3), we also did a comparison on various styles of
g and various numbers of edges. Participants pre-
edges for clarity due to the reduction of clutter.
gly, half of the participants chose the organic edge
e curve is well-known for its effectiveness of trac-
visualization [52].
Part (S4), we did not find demographic differ-

t for the preference of neuroscientists with color
sub-network visualization without background.

Feedback

eceived some general feedback from the partici-
articipant indicated that “Good work with the nice,
ve visualisations.”. Another participant mentioned
eycomb parcellation is very nice, the edges visibil-
g-range is quite tricky.”. Another participant sug-
“summarize these arrows into one arrow, pointing
ningful position in the target hierarchy, and only
ng out to each target area separately”, i.e to bun-
nodes that project between two brain regions on a
chy level.

n

howed the potential and relevance of our approach
ogical research on different species. The results
tudies in Section 6 indicate a positive effect of
-Driven Layouts (R1) on the perception of brain
neuroscientists. By reproducing the results of the
rom mouse for human, we demonstrated a species-
e of our approach (R2). The following discusses

output of these studies in terms of usefulness of
sign, limitations, and potential further improve-

sign. The overall approach of layouting node-link

during the user studies. Here, we showed that the task
nodes and connections in a graph can be performed f
using Spatial-Data-Driven Layouts over simple 2D p
of 3D networks. Finding the nodes was possible by
the graph in perspective views, which are required to
orientation of the graph (R4).

The user studies showed that there is no unique
how many background brain regions (determined by
ber of Background Regions parameter) are ideal. T
pants rather preferred either few or many (R6). Fu
the background can even interfere with edges, whic
in diminishing task performance in the mouse user
(S1).

Furthermore, including brain regions, that are not p
networks as Shadow Nodes (set by the (Shadow No
was considered as highly useful, since it preserves
shape of the brain (R1, R3) and allows the user t
different graphs. A larger Shadow Node Ratio was
as it provides a shape similar to a network covering
brain. Rendering this additional context in shades o
chosen to not divert the viewers focus, and was fa
majority of participants.

Limitations. In general, our approach is spatial-d
and does not require manual re-positioning of nodes
two parameters specific to our approach, Shadow
tio and Number of Background Regions, are mainl
ing the anatomical context, and not the arrangem
nodes per se. Nevertheless, the layouting is perfo
force-directed algorithms, which are typically not
free. During the development of this method, we
these parameters depend strongly on the type of Pa
derived Connectivity and the size of the graph. O
mentation can produce these graphs in an instant, s
the parameters interactively via sliders (Supplemen
1) leads to brain anatomy representing graphs (R5
retain the overall shape of the brain (R3). A way
gate the parameter space automatically would be to
mization algorithms such as gradient decent. Here,
directed layouting parameters could be optimized tow
imizing the Parcellation-derived Connectivity betw
bouring nodes, i.e., what is close in the anatomica
space is also close in the layout. Note, that the purp
paper was to show that Parcellation-derived Conne
be used for for layouting networks while maintain
organization. Hence, the optimization of parameters
directed layouting was not in the scope, for they repr
one exemplary way of layouting Parcellation-derive
tivity. As a consequence, this approach would not
keeping the overall shape of the brain.

Another limitation is that, the background parce
pends on the availability of Hierarchical Represe
Brain Regions, which is not necessarily given for eve
Creating a Parcellation-derived Connectivity can be
as an overhead, that not every potential user is willin

To ensure that nodes do not overlap (R8) and are

resenting brain networks according to their spa-
was perceived as intuitively by our domain experts

tributed, we added an additional layouting step based on trian- 110

gulation between nodes (Section 4.2, Step 5 - Triangulation). In 111
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Participants male)
Part (S1): Me
(a) directly pr
(b) SDDa layo
(c) SDDa layo
Part (S2) Ana
preferred our a
Number of Ba
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Part (S3) Pref
direct (clarity
organic (clarit
orthogonal (cl
Part (S4) Dem
female | male
postdoc | princ
neurosci. | bio
red-green colo

aSDD = Spatial
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Mouse Human
8 (3 female, 5 male) 6 (3 female, 3

dian Task Completion Time
ojected layout 31s 43s
ut without background 24s 32s
ut with background 30.5s 30s
tomical Context
pproach over 2D projection on different hierarchy levels (votes) 6 5

ckground Regions least | middle | most (votes) 5 | 2 | 1 0 | 6 | 0
adow Nodes least | most (votes) 2 | 6 1 | 5
s background colored | gray (votes) 1 | 7 1 | 5
background scoresb 4.05 4.58

ng of re-imagined figureb 3.36 3.33
erred Edge Routing (votes)
| paper | education) 3 | 3 | 3 2 | 2 | 2
y | paper | education) 5 | 5 | 5 4 | 4 | 4
arity | paper | education) 0 | 0 | 0 0 | 0 | 0
ographics

3 | 5 3 | 3
ipal investigators 5 | 3 5 | 1
inf.| comp. sci. 4 | 2 | 2 2 | 2 | 2
r weakness 2 1
-Data-Driven b1 (poor) to 5 (good)

the User-Study of Part (S1) Identifying Nodes/Connections, Part (S2) Visualization of Anatomical Context, Part (S3) Edge Visu
ographic Data

usage scenario, we had to omit this task because
extension was distorted otherwise. Therefore,

ommend this step for species with bulkier brains
se and the human.

ur user study showed that the figures that were
m hand-crafted paper illustrations are well per-
could be considered for publications. However,

features could enable this tool to be used also
roscience research. For example, features, such
the information flow from and to a node, edge
tive changing the networks hierarchy level, hi-
bundling, or overlaying additional region-level
e expression, might enable novel visual analyt-

our proposed visualization of neuronal circuits
la larval brain represents only a first step. Fur-

the visualization to include markers for in-
tions, or a different encoding for neurons that
rain regions, could make this approach a valu-
currently used circuit diagrams.

least, we want to point out that our approach is
patial brain networks. In principle, one could
ch to ”flatten” spatial 3D networks from differ-
to 2D graphs. Even without a hierarchical rep-
egions, and consequently without the rendering
e background, nodes can still be layouted ac-

8. Conclusion

In this paper, we present a novel approach to visuali
networks via spatial-data-driven layouting, and a visua
to render anatomical context. Our method is data-driv
does not require the manual definition of spatial restric
generate anatomically feasible layouts, independent of
or perspective. This is enabled by using Parcellation-
Connectivity, generated from brain atlases, to perform
layouting with standard force-directed algorithms.

We show in several case-studies on different speci
this results in a positioning of nodes that inherently re
the spatial relations between brain regions, i.e., brain
that are adjoined in the reference space are close togeth
graph. This indicates that our method could be applied
ious species; generating novel anatomical layouts of n
entific networks. In further research, one could even inv
the generalization of this approach by applying it to ot
ciplines, where ”flattening” a 3D network to a 2D spac
be beneficial.

To provide further guidance, we developed a visual d
highlight the networks anatomical context. Here, we
color-coded parcellation to the background of a brain n
to indicate major anatomical regions, and provide an
shape, independent of the graph’s completeness. Th
ground is adaptable with regards to anatomical detail, t
sent either anatomical size or the number of connection

We evaluated both the layouting and the design in
based user study with domain experts from the field o
spatial relations, and therefore provide spatial science, computer science, bioinformatics, and computation bi- 57

ology, which showed the general applicability of our approach 58
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- A novel method for generating Spatial-Data-Driven Layouts for neural networks of multiple 
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 No need to manually define brain region related constraints to generate anatomically 

feasible layouts 

 Visual designs providing a consistent spatial context to the user to ease orientation and 

visual comparison of different brain networks 
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