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Fig. 1: Composite Parallel Coordinates help users make decisions about multi-component systems, e.g., choose one of the 392
combinations of gear (top) and motor (bottom) variants for an electric drive. Axes can be merged to represent shared properties
like the gear ratio (a) or to compute system performance indicators from component criteria (b). Filters can be applied to single
components (c) or to the entire system (d). Hovering a gear variant highlights it together with the compatible motor variant (e).

Abstract— We propose Composite Parallel Coordinates, a novel parallel coordinates technique to effectively represent the interplay
of component alternatives in a system. It builds upon a dedicated data model that formally describes the interaction of components.
Parallel coordinates can help decision-makers identify the most preferred solution among a number of alternatives. Multi-component
systems require one such multi-attribute choice for each component. Each of these choices might have side effects on the system’s
operability and performance, making them co-dependent. Common approaches employ complex multi-component models or involve
back-and-forth iterations between single components until an acceptable compromise is reached. A simultaneous visual exploration
across independently modeled but connected components is needed to make system design more efficient. Using dedicated layout
and interaction strategies, our Composite Parallel Coordinates allow analysts to explore both individual properties of components as
well as their interoperability and joint performance. We showcase the effectiveness of Composite Parallel Coordinates for co-dependent
multi-attribute choices by means of three real-world scenarios from distinct application areas. In addition to the case studies, we reflect
on observing two domain experts collaboratively working with the proposed technique and communicating along the way.

Index Terms—Visual exploration, multi-criteria decision-making, systems engineering design, parallel coordinates

1 INTRODUCTION

Identifying the most-preferred solution among a number of multi-
criteria alternatives is a common task in our everyday and professional
lives. It is at the core of many real-world decisions related to buying a
car, choosing a suitable maintenance strategy, or developing products.
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Solution candidates are often generated by simulating the subject un-
der investigation with varying design parameters. A lot of interactive
visualizations have been proposed to help decision-makers deal with
the resulting sets of alternatives, conflicting criteria, and informal sub-
jective preferences [35], with the parallel coordinates plot [18] being
an important representative. These visualizations address the analysis
of single units. However, many subjects to decide upon are systems,
which consist of multiple components being operated together. In this
article, we propose a novel variant of parallel coordinates to enable
co-dependent multi-attribute choices.

The key challenge in multi-attribute choices is the presence of con-
flicting criteria, which raises the need to decide on suitable trade-offs.
This becomes even more challenging when targeted at a system rather
than a single unit. With a system, the task of making a multi-attribute
choice turns into a series of co-dependent choices, one for each compo-
nent involved. At the same time, component-specific choices need to
consider the side-effects on the entire system’s operability and perfor-
mance. Making trade-offs thus extends beyond one single unit.
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For example, let us consider a professional photographer who wants
to buy new equipment for taking portraits. She needs to decide on
a camera body and a suitable lens such that their interplay satisfies
her requirements regarding portrait photography. For this decision,
she needs to be aware of two aspects: 1) deciding for a camera body
restricts her lens choice due to different mount types, and 2) the quality
of the camera body and lens only shows in their joint performance.

When facing such a task, deciding on each component independently
is not an option because the resulting parts might not be interoperable.
Even if they were, component-wise optimality would not guarantee a
globally optimized system performance due to emergent effects. Both
problems could be solved by using a multi-component model to rep-
resent the entire system. However, this means increased model com-
plexity and computational efforts because unchanged partial simulation
results cannot be reused [5].

We aim to avoid the drawbacks of these approaches while retaining
their advantages. To strike a balance between these two ends of the
spectrum, we propose to take into account both 1) the component level
via providing the alternatives of individual components as well as 2)
the system level via linking the component alternatives according to
interoperability and performance aspects.

One approach considering both levels is an iterative optimization,
where the decision-maker observes one system component at a time.
However, iterative multi-criteria exploration of a system can become
a tedious and, at times, frustrating trial-and-error process. In each
iteration, the most-preferred alternative for the component under inves-
tigation is chosen (component level). Its properties are then considered
in the subsequent iterations to evaluate the interoperability and overall
performance (system level) for the multi-attribute choices of the re-
maining components. With an iterative optimization, decision-makers
need to make their way through many back-and-forth iterations until
they reach a desired system design. As the components are visited one
after the other, decision-makers also need to think multiple steps ahead
to anticipate the implications of their current choice in the following
iterations. As a consequence, analysts might tend to proceed with the
first working solution rather than striving to find better designs [5].

In this paper, we present Composite Parallel Coordinates, a tech-
nique built upon the well-known parallel coordinates plot [18] to help
decision-makers choose the most-preferred design variant of a multi-
component system. Unlike an iterative trial-and-error process, it sup-
ports a simultaneous exploration of multiple components. The visual-
ization combines superimposition and juxtaposition strategies to depict
both the individual properties of an alternative at the component level
as well as the dependencies between alternatives of different compo-
nents at the system level. Dedicated interaction patterns strengthen
the perception of component relationships and support efficient naviga-
tion through the usually large solution space. In this way, Composite
Parallel Coordinates enable decision-makers to perform a series of co-
dependent component-specific choices simultaneously and directly take
into account the effects of each decision on the system interoperability
and performance. In particular, the contributions of this paper include:

• A characterization of co-dependent multi-attribute choices includ-
ing an appropriate data model.

• COMPO*SED, a novel parallel coordinates technique that enables
a simultaneous exploration of linked alternative ensembles.

• Validation scenarios taken from three distinct fields of application
that showcase the use of Composite Parallel Coordinates.

The remainder of this paper is organized as follows. We characterize
the analytical problem associated with system design in Section 2. This
includes a data model considering the interaction of components. Next,
related work is discussed in Section 3, followed by the visualization
design and interaction patterns in Section 4. In Section 5, we report on
three validation scenarios that indicate the usefulness of the proposed
technique. Finally, we discuss limitations in Section 6 and provide
conclusions and directions for future research in Section 7.

2 PROBLEM CHARACTERIZATION

Many notions of what a system is have been expressed in the literature
[29]. Most of them describe a system as a collection of components
that jointly perform a function to achieve a common objective. Each
component is typically designed by dedicated specialists who focus on
optimizing its individual characteristics [29]. A central task in systems
engineering is, therefore, to establish a balance or even a symbiosis [51]
among the various components.

The essential – and challenging – characteristics of a system are
its combinatorial nature and the interactions between its components
that lead to emergent properties. Emergent properties are properties of
the system that the individual components do not possess when acting
separately [42]. The characteristics pose three major challenges for
systems design:

CH1: Combinatorial optimization typically entails a huge solution
space, even if restrictions apply. This prohibits an assessment of
all possible system designs.

CH2: Interoperability constraints restrict how components can be
connected in a system. Consequently, individually optimal com-
ponent alternatives might not be interoperable.

CH3: Emergent properties make the system performance difficult to
derive from individual component performances. In particular,
local optimality might not yield a global system optimum.

With the term systems design, we denote the process of determining
a combination of interacting components that optimizes the emergent
system performance with respect to a number of objectives. Carlson-
Skalak et al. introduced the term catalog design [5] for a two-stage
process that consists of 1) specifying a system configuration [36], i.e.,
an arrangement of generic components, and 2) instantiating this config-
uration by selecting particular component variants from catalogs. In
this work, we address the second stage, where the generic components
are instantiated in a way that optimizes the system performance while
the configuration does not change.

2.1 System-Oriented Data Model
The subject under investigation is a fixed set C = {C1, ...,Ck} of com-
ponents that together form a system. Each component is optimized
individually based on multi-run simulation, resulting in one ensemble
per component. Each member of a component ensemble is a variant
of this component. Although the components seem independent at
first, they need to be integrated to achieve the purpose of the system.
Thus, the ensembles cannot be analyzed separately. Instead, an optimal
combination of component variants requires a consideration of two
levels: the component and the system level (Figure 2).

2.1.1 Ensemble Data at the Component Level
Independent of their role in a system, component variants are described
by a set of properties. An ensemble of component variants results
from multi-run simulation describing the behavior of a component
under different input settings. The simulation model approximates a
function that maps some design parameters X = {X1, ...,Xn} to some
criteria Y = {Y1, ...,Ym}. For each criterion, the desired direction of
change (minimization or maximization) is given as metadata. We
refer to the design parameters and criteria as variables. Sampling
the design parameter space yields an ensemble of design options x =
(x1, ...,xn); xi ∈ Xi. For each design option, the simulation results in a
performance vector y = (y1, ...,ym); yi ∈ Yi. We refer to the union v =
(x,y) of a design option and its simulated performance as a component
variant. All variants together form a component ensemble V .

2.1.2 Dependencies between Ensembles at the System Level
At the system level, the variants available for each component are put
into the system context to account for their interoperability (CH2),
i.e., components can only be connected under certain conditions, and
emergent properties (CH3), i.e., system performance as a synergy of
component performances. The following formal description reflects
these dependencies in the data model.
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Fig. 2: The system-oriented data model, going from the component
level (bottom) to the system level (top). Only interoperable component
variants (right) can be combined. The resulting system variants are aug-
mented with global criteria approximating their emergent performance.

Interoperability To form a smoothly operating system, each indi-
vidual component needs to fit its neighbors, physically and functionally.
Mittal and Frayman use the idea of ports to describe such intercompo-
nent boundaries [36]. A port is where a component connects to other
components. Since we do not assume arbitrary connectivity, a port
is also associated with constraints. For example, a lens can only be
mounted on a camera body with a fitting mount type.

To represent ports and their constraints in our data model, we looked
at how data sets are joined in relational databases [10]. A join condition
specifies whether items from different data sets can be combined into
a single type. In our case, items are variants of different components
that are combined into a system variant based on an interoperability
condition. A system variant is valid if it contains exactly one variant of
each component in the configuration. To avoid potentially incomplete
system variants, we use inner joins to model the interoperability of
components. Inner joins consider a tuple of component variants as a
system variant, if and only if all variants match the given condition.

Consider two components Ci and C j with variant ensembles VCi and
VC j . The inner join computes an ensemble VS of system variants, i.e.,
combinations of interoperable variants from Ci and C j (Figure 2):

VS = {(vi,v j) ∈VCi ×VC j | I(vi,v j) = true} (1)

The interoperability condition is represented by a generic predicate
function I. As interoperability is concerned with design space restric-
tions, I is evaluated on the components’ design parameters. We detail
the definition of I based on the following assumptions:

• Interoperability might be constrained by more than one port. We
distinguish the involved ports by an index p. All defined port
constraints must be met for I to yield true.

• Each port constraint is described by a predicate Ip that is de-
fined on two design parameters, one of Ci and one of C j. We
write Sp(vi) and Sp(v j) to select the values of the two design
parameters from the respective component variants vi and v j.

• The predicate Ip of each port is selected from a class of boolean
functions during the specification of the system configuration.

Given the first two assumptions, we define the predicate function I as
the logical AND operation (

∧
) of all individual port predicates Ip:

I(vi,v j) =
∧
p

Ip
(
Sp(vi),Sp(v j)

)
(2)

By specifying the predicates Ip and the design parameters they operate
on, I can be chosen to account for a variety of interoperability condi-
tions in various domains. The possible functions for Ip can be of two
different types: the two design parameter values are directly compared,
or an aggregation is computed and compared to a constant c.

Ip(x,y) =

{
x G# y, (direct comparison)
x⊙ y G# c, (comparison with constant)

(3)

Above, G# ∈ {=, ̸=,>,≥,<,≤} and ⊙ ∈ {+,−,∗,/}. Thus, Equation
3 describes 30 functions that can be used to define the most common
port constraints during the system configuration. A natural join or a
theta-join [10] is implemented through a direct comparison (natural
join) or a comparison with a constant (theta-join) on the relevant design
parameters. For example, for the natural join of camera bodies and
lenses we can choose Ip to operate on the components’ design parame-
ters mount type using ”=” as the comparison operator G#. Depending
on the interoperability conditions for a system design problem, the
definition can be extended with custom predicates if they are using
exactly one design parameter of each component. In this way, our
technique generalizes to a wide variety of applications.

Emergent Properties This dependency between components
refers to the system performance as an emergent property of a combi-
nation of component variants. We distinguish between local criteria
capturing the individual component performances and global criteria
capturing the emergent system performance of valid system variants.
Following the formal characterization of Weidele [50], this can be
described as conditional data: if component variants meet the interoper-
ability predicate, the resulting system variant can be augmented with
details about the system performance. Instead of costly simulations, we
approximate the system performance by computing global criteria from
selected local criteria. A computation based on semantically related
local criteria may involve simple mathematical operations, like adding
up individual component costs to a system price but may also use
more complex functions to address non-trivial compositions. However,
the global criteria can also be computed by a conventional weighting
approach to aggregate local criteria without any semantic relationship.

2.2 Task and Requirement Analysis
The design of engineered systems is relevant in a variety of domains,
each providing different environments regarding specifications, do-
main knowledge, and existing workflows. In this work, we focus on
the common difficulties and needs that are associated with system de-
sign problems where the arrangement of generic components, i.e., its
configuration, is already known.

Wang and colleagues present six analytic tasks related to inferring
meaningful information from ensemble data [48]. Their compilation
does not cover the main task of system design, which lies in an in-
formed combination of members of different ensembles. The primary
goal of the analyst is to determine the most preferred combination of
component variants, such that the resulting system’s performance is
optimized with respect to a number of criteria. As there is no inverted
simulation model that tells analysts how to choose the design param-
eters to achieve the desired performance, the available combinations
need to be explored [43]. The exploratory choice involves multiple
co-dependent decisions: for each component involved in the system
configuration, analysts need to select the best option among a finite
number of variants, generally referred to as multi-attribute choice [12].

With a single unit, best depends on an alternative’s Pareto dominance
and the decision-maker’s subjective preferences. When dealing with
a system, the superiority of a component variant additionally depends
on its interplay with the rest of the system. Herein lies the main chal-
lenge of system design. In fact, a central aspect of system design is
the ”subordination of individual goals and attributes in favor of those
of the overall system” [29]. Such mutual dependencies significantly
intensify the decision-making process. Deciding for the best combina-
tion turns into a series of co-dependent multi-attribute choices, whose
potential side effects need to be considered when making trade-offs. An
exploration across ensembles is thus guided by the following questions:

T1 Overview: What are the value distributions of design parameters
and criteria at the component level and at the system level?

T2 Competition: What is the nature of conflicts among criteria? How
important are component performances and system performance?

T3 Filter: What is the effect of system and component constraints?
T4 Subjective Evaluation: Is a variant feasible? Does it balance the cri-

teria according to the stakeholder’s preferences, tolerances, domain
knowledge, and experience? Which variant is superior?
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T5 Connectivity: Given a (set of) component variant(s) of interest,
which variants of the remaining components are interoperable?

T6 Navigation: How does deciding for a component variant affect the
availability of remaining variants and the system performance in
reach? Which variant improves the emergent system properties?

T7 Key Component Variants: Which component variants yield a good
performance, while being interoperable with many other variants?

T8 Partial Choice: Does a partial component choice, i.e., selecting a
set of possible component variants, leave enough room for balanc-
ing the properties of the remaining components?

T9 Variant Replacement: How does a component variant contribute to
the system performance? What is the effect of replacing it? Which
replacement increases component or system performance?

3 RELATED WORK

For depicting multi-attribute variants of a single component, we can
draw from existing works on multivariate Pareto front visualization
(Section 3.1). Jointly analyzing variant ensembles of more than one
component relates to visualization approaches addressing a simultane-
ous investigation of different but related datasets (Section 3.2). Since
we use parallel coordinates, we also investigate related approaches for
organizing parallel coordinates axes (Section 3.3).

3.1 Multivariate Pareto Front Visualization
Visualizations for multi-criteria decision-making can be categorized
based on the cardinality of the result set, i.e., visualizing a single solu-
tion, a finite solution set, or an infinite set of solutions [27]. Our data
model even involves multiple finite solution sets. Dimension reduc-
tion and lossless projection are two common strategies for visualizing
multi-dimensional criteria in two-dimensional visual space [33].

Dimension reduction approaches provide a dense representation of
a virtually arbitrary number of dimensions. They have been used to
visualize Pareto fronts using self-organizing maps [7] or t-SNE [52].
However, they are usually hard to read and interpret, which impedes a
considerable number of analysis tasks that rely on raw values.

In contrast, a lossless projection enables decision-makers to visually
retrieve any criterion value of any alternative without interaction [12].
To simplify multi-attribute choice, tabular visualizations have been
extended with weight-based ranking [15]. However, it is difficult to
adequately capture preferences by weights. Scatterplots visualize trade-
offs between two criteria [37] but can be extended to more criteria
by composing them into a scatterplot matrix. Still, the perception of
multi-criteria options is limited to pair-wise projections.

To date, the predominant technique to visualize Pareto frontiers are
parallel coordinates [18]. They present a compact two-dimensional
visual representation that allows for a comparison of alternatives across
all design parameters and criteria. Different layouts [22], axis modifi-
cations [2], and extensions [6, 11] have been proposed. Among others,
parallel coordinates have been applied to design problems in automotive
and aerodynamic engineering [25], also in virtual reality settings [46].
In their survey, Heinrich and Weiskopf define a composite parallel coor-
dinates plot as a composition of several visualization layers, e.g., axes
and brushes [17]. In contrast, we propose a side-by-side composition of
multiple parallel coordinates plots, which emphasizes the dependencies
and emergent properties in multi-component systems.

3.2 Visualization of Multiple Related Data Sets
System design requires an investigation of related data sets representing
components and their interactions. Konyha and colleagues conclude
that single table approaches are insufficient to describe such data and
its dependencies [26]. This view is shared by Kehrer and Hauser, who
identify multi-model scenarios resulting in two or more interacting data
parts as a promising direction of visualization research [23]. A central
question in such cases is how to investigate patterns across data sets.

Coordinated multiple views may link multiple tables via primary and
foreign keys, for example, in Snap-Together by North and Shneiderman
[39]. Liu et al. consider the relationships between data items as a graph
and propose the system Ploceus for a network-based visual analysis
[32]. With Domino, Gratzl et al. propose a meta-visualization technique

allowing users to create explicitly linked views to represent data subsets
and four degrees of relationships between them [14]. Working with
multi-resolution models, Spletchna et al. address the complication of
only partially overlapping parameter spaces as a key challenge [45].

The links between our component data sets are not defined by shared
identifiers but by value predicates. Kehrer et al. propose a similar
abstraction of the relation between two data sets, which they call inter-
face [24]. Their abstraction addresses multi-model scientific data in a
spatial domain, which can be exploited to describe the relations via co-
location. Closest to our approach is the work by Splechtna et al., who
propose to relate items of different data sets based on their properties
regarding one or multiple (common) attributes [44]. While we build
upon such conditions to represent the interoperability of components in
a system, their approach cannot be used for emergent properties.

The analysis of emergent properties plays a significant role for the
optimization of complex engineered systems. Basole et al. propose a
network-based visual analytics tool for system design that explicitly
considers how intermediate decisions influence system-level proper-
ties [3]. While their approach focuses on an iterative reconfiguration of
the system, our approach is based on systematic sampling of the design
space upfront to gain a broad overview early in the process. Closest
to our work, Marth et al. use scatter plots to evaluate the joint perfor-
mance of a motor and a gear in a side-by-side arrangement [34]. They
provide performance criteria for individual motor and gear variants as
well as for their combinations by summing up the individual criteria
(e.g., the sum of losses or lengths). We generalize the specification of
interoperability and joint performance and visualize these system-level
properties together with component-level properties. So far, no multi-
ensemble approach has been proposed that allows for a simultaneous
exploration and optimization of individual ensemble members as well
as conditional combinations of ensemble members.

3.3 Axis Configurations for Parallel Coordinates
The core challenge of our parallel coordinates composition is the ar-
rangement of axes. In the conventional layout, every dimension has two
direct neighbors. A strategy to overcome this limitation for visualizing
many pair-wise relations is to replicate axes of individual dimensions.
Lind et al. combine multiple axis orderings in a many-to-many parallel
coordinates plot [31]. Replicated axes depicting the same dimension
are arranged in polygons to communicate all pair-wise relations of
dimensions in a non-overlapping way. Claessen and van Wijk propose
a generalization where axes can be positioned freely and linked via
scatter plots (orthogonal axes) or parallel coordinates (parallel axes) [9].
We did not consider such an approach because it results in a complex
visualization layout, even for single components.

We want particular relations across components to stand out. Multi-
ple strategies have been proposed to visually aggregate dimensions with
similar semantic meanings. Andrews et al. introduce aggregate axes
that replace related dimensions by substituting the dimension values
with their mean [1]. Axes can be interactively collapsed and expanded.
Bhattarai and colleagues use the sum to merge dimension axes for an
exploration of material compositions [4]. Garrison et al. aggregate
dimensions that contribute similarly to the variance of a dataset by
mapping parallel coordinates axes to the first and second principal
components of the dimensions [13]. In their product comparison tool
ConfigurationFinder, Riehmann and colleagues organize semantically
related dimensions in groups that are represented by an expandable
proxy axis [40]. The approaches mainly differ in how the related di-
mensions are identified (domain knowledge or automated analysis)
and how the aggregations are calculated and presented. In our case,
related dimensions of different components are derived from the ana-
lyst’s knowledge. Their axes can be merged using different functions to
depict system-level properties. A primary challenge with our approach
is to represent the interoperability conditions.

Conditional parallel coordinates by Weidele use predicates to insert
nested axes for conditional dimensions that apply only to data sets
satisfying specific properties [50]. While this approach allows for
representing items of different types in one view (e.g., cameras and
lenses), it does not enable a combination of items of two or more types.
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(a) Conventional Parallel Coordinates

(b) Composite Parallel Coordinates

Fig. 3: Camera-lens systems depicted by (a) conventional parallel
coordinates (PC) vs. (b) the proposed Composite Parallel Coordinates
(ComPC). PC display the combinations over their joint variable space,
while ComPC partially juxtapose cameras (purple) and lenses (green).
In contrast to PC, they explicitly visualize the combinatorial problem.

In our approach, all dimensions can be shown from the beginning
because the predicates imply combinatorial constraints, leaving the
dimension schema unchanged. In particular, axes unique to one type
(i.e., component) are shown at the same level of detail as shared axes.

Regarding the ambition to visualize multiple ensembles, most sim-
ilar to our approach are the nested parallel coordinates proposed by
Wang et al. [49]. They use nested axes to compare data distributions
from multiple ensembles that originate from climate simulation at dif-
ferent resolutions. Our Composite Parallel Coordinates are inspired
by their approach, i.e., to assemble juxtaposition and superimposition
for analysis within and between different ensembles. However, while
their ensembles provide different resolutions of the same subject, the
components represented by our ensembles are different subjects.

4 DESIGN OF COMPOSITE PARALLEL COORDINATES

Based on our formal characterization of system-oriented data, we in-
troduce a novel variant of parallel coordinates for their visualization.
It allows analysts to explore the possible combinations of component
variants while taking into account both the individual component prop-
erties as well as their emergent system properties. Parallel coordinates
offer a compact and lossless two-dimensional visual representation for
multi-dimensional observations. We made them the basis of our visu-
alization design primarily for their lossless mapping and flexible axis
arrangements [9] but also for their simple applicability and wide-spread
use in multivariate data exploration.

System design requires an observation of design options both at the
component level and at the system level. This leads to three conflicting
visualization design goals (G1, G2, G3) and one independent goal (G4):

G1: Component-level analysis requires a stand-alone observation
of individual properties per component. Without prior relevance
information, all components and properties are considered equally
meaningful for analysis.

G2: Context awareness requires to relate observed component prop-
erties to semantically similar properties of other components.

G3: System-level analysis needs an observation of similar proper-
ties across components. The evaluation of interoperability and
emergent performance benefits from explicit system properties.

G4: Layout stability is an overarching design goal. In contrast to
open data exploration scenarios, where no analysis strategy is
imposed, system design relies on a clear mental model of the

system structure and properties to investigate. A stable overview
layout allows analysts to focus on trade-offs instead of adapting
to varying positions of components and their properties.

Conventional parallel coordinates lack the ability to depict the de-
pendencies between individual ensemble members (Section 4.1). We
therefore propose Composite Parallel Coordinates, whose axis layout
(Section 4.2) and interaction patterns (Section 4.3) reflect the notion of
a system being a composition of interacting components.

4.1 Reviewing Conventional Parallel Coordinates
A conventional parallel coordinates plot depicts a single multi-
dimensional dataset, where all items are defined in the same variable
space. To visualize multiple component ensembles, their different vari-
able spaces need to be merged already during the data transformation
step. This can be achieved by joining the component variants according
to their interoperability. Due to the combinatorial nature, the number of
items and variables to visualize increases drastically (upper bound n∗m
for items or n+m for variables). Conventional parallel coordinates
then result in a plot with many side-by-side axes, where the polylines
represent the ensemble VS of complete system variants (Figure 3a).

In this plot, the subdivision of system variants into individual com-
ponent variants is not obvious. This makes it difficult to perceive how
the properties of the system originate from the interactions between
the individual components. It complicates the central aspect of system
design, being the subordination of component-specific characteristics
in favor of the system performance [29]. The root of this complication
is the axis layout being restricted to the horizontal direction.

On the one hand, the success of a choice at the component level
is determined by the individual component properties (G1). This is
easier to evaluate if all axes belonging to the same component Ci are
placed directly next to each other, such that each component variant
v is represented as a self-contained polyline. This axis order supports
tasks like gaining an overview of component variants (T1), determining
key component variants (T7), or replacing a component variant (T9).

On the other hand, determining the success of an intermediate choice
builds upon an evaluation of emergent system properties (G2 and G3).
This can only be achieved by placing the involved axes belonging to
different components Ci and C j directly next to each other. Such an axis
order supports tasks like determining interoperability (T5), evaluating
the system performance (T4), or navigating the combinatorial design
space (T6). However, it contradicts the component-wise adjacency of
axes required for evaluating the choice at the component level.

Using conventional parallel coordinates, G1, G2 and G3 can only
be achieved if we allow the axis order to be interactively adjusted to
the varying analysis focus. However, this would mean violating the
requirement for layout stability (G4).

To summarize, conventional parallel coordinates are not suited to
meaningfully represent both component membership (CH1) as well
as interoperability (CH2) and system performance (CH3). This boils
down to them being restricted to depicting a single ensemble of system
variants using a one-directional axis layout. Parallel coordinates cannot
communicate the dual role of component variables that contribute to
both component-specific properties as well as system-wide properties.

4.2 Layout of Composite Parallel Coordinates
As explained previously, conventional parallel coordinates do not allow
for an understanding of how the components work together. This issue
can be solved by visualizing the components individually instead while
paying particular attention to the interfaces between them. We map the
component ensembles to distinct parallel coordinates plots. Depicting
their interfaces poses an inherent challenge when visualizing a system
as a composition of components. It requires careful integration of
the different parallel coordinates plots into the same view. Javed and
Elmqvist define this approach as composite visualization [21]. We
make use of their design space to convey the idea of Composite Parallel
Coordinates. Our visualization design was guided by the following
question: how to make component properties (G1), their context (G2),
and system properties (G3) equally accessible in a stable layout (G4)?
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(a) Horizontal Layout (b) Circular Layout (c) Vertical Layout (d) Vertical Layout with Superimposition

Fig. 4: Different layout strategies to represent two components and their dependencies. Related properties of different components should be
depicted close to each other. (a) Concatenated PCPs allow for adjacency of one pair of related properties. (b) Bending them to a circle adds
another adjacent pair of related properties. (c) A vertical arrangement allows for more than two pairs of properties with similar semantics to be
placed close to each other. (d) Where applicable, shared and related component properties can be merged to explicitly reflect system properties.

4.2.1 General Visualization Design
A composite visualization is a natural choice for depicting a system of
interacting components. In contrast to the concept of coordinated mul-
tiple views [41], where different visualizations depict different aspects
of the same data items, our composition involves multiple instances of
the same visualization to depict different but related data items. The
reason is that the primary task of making a multi-attribute choice is the
same for each component in the system to be designed. Each system
component ensemble VCi is depicted by one parallel coordinates plot.

How do these views become part of a composite visualization?
Data-wise, they are independent because the variable spaces X ∪Y are
different for each component. The views’ dependency originates from
the domain-specific semantics regarding interoperability and emergent
properties (see Section 2.1.2). The visual design task is to communicate
these implicit dependencies as explicitly as possible.

The design space of composite visualizations proposes two symmet-
ric and two asymmetric composition strategies [21]. The asymmetric
strategies, namely overloading and nesting, impose an imbalance be-
tween views, which does not match the inherent symmetry of the system
design problem, where all components are considered equally impor-
tant. Thus, we turn toward the two symmetric strategies: juxtaposition
and superimposition (Figure 3b). Juxtaposed parallel coordinates plots
address the component level by depicting the largely different variable
spaces. Superimposed axes of different plots address the system level
by communicating emergent properties like interoperability conditions
and overall system performance.

Our strategy accounts for the pairwise relations between the k vari-
able spaces of the components. It involves different visual mappings to
communicate the following parts of a relation between variable spaces:

• Shared: two variable spaces share parts where they exhibit com-
mon variables. Typically, these variables are design parameters
considered for the modeling of interoperability, e.g., mount type.

• Related: the related parts of two variable spaces contain those non-
common variables that contribute to interoperability and emergent
properties (see Section 2.1.2). Related variables can be design
parameters or criteria, such as camera price and lens price.

• Unique: those parts of a variable space that neither involve com-
mon nor related variables are unique, e.g., lens focal length.

Below, we describe our design choices regarding these visual mappings.

4.2.2 Juxtaposition for Component Level
At the component level, the decision-maker focuses on the individual
properties of one component at a time (G1). Besides context awareness,
considerations that involve other components, like interoperability and
system performance, are of secondary importance. The simplest way
of presenting an overview of all component ensembles is a juxtaposi-
tion of separate visualizations. Due to their independence, they allow
analysts to focus on individual components without interference or
distraction. As all components are considered to be equally important,
we symmetrically divide the available visual space.

Juxtaposed views are generally highly flexible regarding their ar-
rangement. However, in our case, the layout quality particularly de-
pends on its ability to display semantically related properties of different
components spatially close to each other in order to maintain the system
context (G2). The value of juxtaposition then stems from the boundary
between two views conveying shared semantics. In the following, we
discuss different layout options in light of this aspect.

Let us consider the composite visualization of two component en-
sembles VCi and VC j . A naı̈ve approach would be to horizontally con-
catenate the two parallel coordinates plots (Figure 4a). Perceiving the
system context requires the related properties of both components to
be depicted close together. To achieve adjacency, the respective axes
are placed at the inner ends of the plots. However, only a single pair of
design parameters or criteria is adjacent, meaning that only one inter-
operability condition Ip or emergent property can be communicated.

The second option is a circular layout (Figure 4b). The related design
parameters are placed at the inner boundary of the concatenated plots
and the criteria contributing to emergent properties at their outer ends.
The plots are then bent to a circle, such that the criteria, too, are adjacent.
The result resembles a radar chart. Still, this layout conveys only one
interoperability condition Ip together with one emergent property and
cannot be extended to more than two components.

A third option is to arrange the parallel coordinates plots verti-
cally (Figure 4c). The vertical distribution clearly separates the visual
representations of individual components, thus enabling an efficient
perception of the component level. The horizontal direction can then
be exploited to position variables with similar semantic meanings but
belonging to different components one below the other. In this way, the
boundary between two views conveys shared semantics via multiple
interoperability conditions and emergent properties and properly ac-
counts for context awareness. In addition to that, the layout offers the
potential to be extended to more than two components.

Based on the requirements imposed by the component-level analysis
(G1) and context awareness (G2) together with the overarching layout
stability (G4), the juxtaposition with vertical layout is the most promis-
ing option to proceed with. While the boundary between views conveys
the system context via shared variable semantics, any linking between
data items of different views is revealed only upon user interaction. Re-
lations between variants vi ∈VCi and v j ∈VC j of different components
are difficult to perceive. These relations describe the interoperability of
component variants as well as their joint performance. They refer to a
system-level analysis (G3), which is detailed in the following section.

4.2.3 Superimposition for System Level: Composite Axes

Dependencies at the system level manifest in parts of the variable spaces
being shared (common variables) or related (variables contributing to
interoperability conditions or emergent properties). Superimposition
means to overlay two plots in a single view [21]. We implement it by
allowing the user to merge those axes that are associated with shared
or related parts of the variable spaces (Figure 4d). As a result, the
interface of two components is depicted by those polyline sections that
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(a) (b) (c)

Fig. 5: Composite axes represent interfaces between components. (a)
Shared design parameters can contribute to interoperability (e.g., mount
types should be equal). (b) Related design parameters specify interop-
erability via inequality (e.g., radii of components should differ by one
unit at most). (c) Related criteria are added up to a system criterion.

intersect the superimposed axes and thus share the same visual space
at the boundary between the juxtaposed plots. Unlike any other layout
that we considered, this strategy solves the component-level analysis
(G1) with context awareness (G2) and the system-level analysis (G3)
while providing a stable layout (G4).

The design parameters and criteria that are unique to individual
components are not affected by superimposition. They are represented
by the juxtaposed atomic axes of the individual parallel coordinates
plots because they do not semantically relate to another component’s
properties. An example is the property focal length of camera lenses,
which remains unaffected no matter which camera body is chosen.

For the shared and related parts of the variable spaces, we introduce
composite axes. These axes can take different forms, depending on the
represented type of dependency and the current analysis focus. What
they have in common is that atomic axes of different plots might be
collapsed into a derived axis. It is placed vertically in between the
involved juxtaposed views and acts as an independent variable itself.

We distinguish three types of dependencies between components,
which are represented by slight variations of composite axes:

• Shared design parameters are depicted using a permanently
collapsed axis (Figure 5a). They are not expandable, as this
would mean to duplicate the axis and thus add redundancy.

• Related design parameters are depicted using separate axes
initially, but can be collapsed by applying a predicate function
describing the interoperability condition Ip (Figure 5b).

• Related criteria are also depicted using separate component axes,
but can be collapsed via a mathematical operation that maps the
component criteria to a system criterion (Figure 5c).

Composite axes have a button located beneath them to collapse and
expand the associated component variables. When two component axes
are collapsed, the derived axis is inserted vertically centered between
the two original axes, replacing them. The polylines of both involved
plots are updated to intersect the collapsed axis. Where non-identical
parameters are merged, this requires the creation of combinations. To
keep complexity low, the range of the collapsed axis is computed
naı̈vely from the extreme values of the original axes. When the col-
lapsed axis is expanded again, the component axes are inserted at their
original position in the plot, replacing the collapsed axis (G4). The
polylines are updated again to intersect the separate component axes.

The dependencies, i.e., which parameters can be collapsed and how
are prescribed by the particular application domain. The axis pairs and
collapse functions are specified a priori by users in the form of metadata
of the dataset to be analyzed. Up to now, the users have managed to
do so without a dedicated user interface. Still, whenever needed, only
development efforts would be required to provide a user interface to
not only specify but also adjust the axis pairs and collapse functions.

(a) Hourglass Shape (b) Wristwatch Shape

Fig. 6: The axis order follows the input to output mapping. It minimizes
alternation between separate and collapsed axes. Unlike the wristwatch
shape (b), the hourglass shape explicitly depicts the bottleneck (a).

Value Mapping The value mapping of a composite axis depends
on its type and collapse function. Composite axes displaying shared
design parameters do not require a dedicated value mapping. The
permanently collapsed axis simply displays the original parameter
values of the variants across both components (Figure 5a).

In contrast to shared parameters, related parameters have the same
semantic meaning but are not identical. They are initially observed
individually using separate component axes. Based on their semantic
relationship, these axes can be collapsed to reflect properties at the
system level. This requires the combination of component variants
using a dedicated value mapping that derives an aggregated system
value from the two original component values. These aggregated values
are displayed on the collapsed axis. To specify the exact mapping, we
need to distinguish related design parameters and related criteria.

For related design parameters, the collapse function is taken from
the pool of interoperability predicates (Section 2.1.2). As an example,
the outer radius of a motor rotor is related to the inner radius of the
surrounding stator according to an inequality constraint. A predicate Ip
is applied in two steps. First, the aggregate of the two component values
is computed using the ⊙ operator. In case of a direct comparison, where
no operator is involved, the predicate is rewritten to a comparison with
constant 0, e.g., x < y → x− y < 0. For the rotor and stator, ⊙ might be
defined as subtraction such that rinner − router describes the clearance
between both mechanical parts. This aggregate value is displayed on
the collapsed axis. Its range is derived from the aggregate values across
all combinations of rotor and stator variants. In a second step, the
comparison operator G# is applied as a filter. In this case, the clearance
should not exceed the value one, so G# is ≤ and any aggregate value
less than or equal to one is brushed on the axis (Figure 5b).

As an example for related criteria, the individual prices of a camera
body and a lens might be added up to reflect the system price. Criteria
can only be collapsed when they are 1) both to be minimized or both to
be maximized and 2) associated with the same or relatable units. Upon
collapse, any meaningful mathematical operation might be applied
to the original values of the two involved component criteria. The
collapsed axis then depicts for example the total system costs as the
sum of the two component prices (Figure 5c). Its range is computed
by applying the same operation to the original minima and maxima of
the component axes. This range covers all potential combinations of
component variants but is not necessarily exploited.

Axis Order The initial order of composite axes is generated by
mapping the input-output order of the data model to the reading direc-
tion from left to right. The design parameters (input) are placed on the
left side of the visualization, while the criteria (output) go on the right
side. We can further divide the input and output into unique and shared
or related variables. It should be noted, however, that strong alternation
between separate and collapsable composite axes is not desired due to
the turbulent polyline courses this generates.

Considering this, we can place the separate design parameters left,
then the collapsable design parameters and collapsable criteria in the
middle, and the separate criteria to the right (Figure 6a). The result-
ing shape resembles an hourglass. Alternatively, we can place the
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(a) Problem: Line Overlap (b) Solution: Triangle (c) Solution: Parallel Sets

Fig. 7: Unwanted line crossings occur where separated polylines merge
into one (a). Redirecting the polylines via duplicates of the collapsed
axis using a triangle (b) or parallelograms (c) mitigates the overlaps.

collapsable design parameters to the left, then the separate design pa-
rameters and separate criteria in the middle and the collapsable criteria
to the right (Figure 6b). Due to the closed ends, this shape looks more
like a wristwatch. Within these constraints, the axes are initialized
according to the order in which they occur in the datasets. We decide
for the hourglass shape, because it explicitly communicates that the
bottleneck of system design is the interaction between components.

Handling Line Overlaps The fusion of component polylines at
collapsed composite axes provokes line crossings that can make the
course of individual lines hard to trace (Figure 7a). We developed two
strategies to cope with this phenomenon.

The first strategy is inspired by the many-to-many parallel coordi-
nates proposed by Lind et al. [31]. They arrange replicated axes of the
same variable in a triangular shape to visualize a one-to-three relation-
ship. We implement this concept to handle line crossings by replicating
the collapsed axis, arranging the three identical axes in a triangle, and
redirecting the polylines from the original collapsed axes via the two
replicated axes to the adjacent separate axes (Figure 7b).

The second strategy resembles the parallel sets originally introduced
for categorical data [28]. We use parallelograms to show the connection
between the original and replicated axes (Figure 7c). The vertical
orientation of the replicated axes matches well with the general layout
of the parallel coordinates. It explicitly communicates that the polylines
split up into the two component levels. The values are easier to read
from the axes, and the match between incoming polyline sections at
the collapsed axis and outgoing sections at the replicated axes is easier
to make. We thus opt for the parallel sets strategy to bypass the line
crossings where separate and collapsable composite axes are adjacent.

4.3 Interaction Patterns
Interaction is essential for effective use of Composite Parallel Coordi-
nates. It allows analysts to filter the available alternatives according to
constraints and preferences as well as emphasize alternatives of inter-
est. Our interaction mechanism involves three cascading selectors to
gradually refine a selection of alternatives under focus.

The selectors are hierarchically structured: filters take precedence
over locks, which in turn have priority over mouseover interactions.
The outcome of any selector is a set of alternatives. Each selector
operates on the outcome of the precedent selector: hovered alternatives
are a subset of locked alternatives, which in turn are a subset of filtered
alternatives. Note that this structure does not prescribe the order in
which selectors have to be applied. Selectors are optional: if a selector
is not active, the outcome of its precedent selector remains unchanged.
At any time, the selection resulting from the cascade of currently active
selectors is highlighted, while the remaining alternatives are depicted
in grey for context. In the following, we describe the three selectors in
the order of their precedence.

4.3.1 Eliminating Undesired Variants Via Filters
We provide filters in the form of range brushes that can be applied to any
design parameter or criterion axis in the Composite Parallel Coordinates.
As alternatives need to be evaluated regarding multiple constraints

and preferences, multiple brushes can be combined into a composite
brush using the logical AND operation. Where brushes represent
interoperability conditions Ip, their composite brush corresponds to the
overall interoperability I. Because it does not make sense to exclude
variants that are located at the desired end of an axis, brushes on criteria
axes are tied to the high-quality end of an axis [8].

In large parts, filtering works in a standard way: alternatives covered
by a brush are included in the selection. However, the combinatorial
nature of the optimization gives rise to some special considerations:

• A component variant is selected if it is brushed itself or can be
combined with at least one brushed variant of another component.

• A component variant can be brushed itself on a unique axis or as
part of a combination on a collapsed axis.

• When two axes are collapsed, the new brush slider position is
determined by applying the collapse function to the original slider
values. Upon expansion, the original slider values are restored.

Eliminating undesired alternatives via filtering results in a subset of
acceptable options to proceed with (Figure 8a).

4.3.2 Highlighting Desired Variants Via Locks and Mouseover
With a potentially large number of acceptable combinations remain-
ing after filtering, users need support in scanning through the filtered
alternatives to further refine the selection.

We provide locks and mouseover selection on polyline segments
to convey interesting valid combinations of component variants. The
atomic unit of an interaction is a system variant (vi,v j) ∈ VCi ×VC j ,
i.e., a one-to-one combination of component variants. Any interaction
taking place on one part of a system variant also applies to the rest of
the system variant. Due to the combinatorial nature, multiple system
variants might pass through the same polyline segment, in particular
where shared axes are adjacent. An interaction with a polyline segment
can thus lead to more than one system variant being hit.

To specify the second selector, a filtered polyline segment can be
clicked to lock the associated set of combinations, updating the se-
lection to the respective subset of the filtered alternatives (Figure 8c).
Only one segment can be locked at a time. A lock is active until it is
unlocked (by clicking again) or moved to another polyline segment
(by clicking the respective segment, see Figure 8e). Unlocking a lock
makes the selection fall back to the superset of filtered alternatives.

To specify the third selector, the selection resulting from the lock
can be refined via mouseover (Figure 8d). If there is no active lock,
the mouseover operates on the set of filtered alternatives (Figure 8b).
The mouseover interaction is temporary: when the cursor leaves the
hovered polyline segment, the selection falls back to the set of locked
alternatives or to the set of filtered alternatives if no lock is active.

Anything that remains in the selection after applying the current
cascade of filters, lock, and mouseover is highlighted. At the end of an
analysis, this is usually a unique combination of component variants,
i.e., the final system choice (Figure 8f).

5 VALIDATION

Composite Parallel Coordinates provide a novel approach to a simul-
taneous exploration and analysis of multiple interacting datasets. To
validate its domain usefulness in terms of problem-solving character-
istics, we report on two usage scenarios and one case study [20] from
distinct application domains. In the case study, we particularly reflect
on observing an analysis conversation between two engineering experts.
The results suggest that our technique supports the identified analysis
tasks for making co-dependent multi-attribute choices.

These three real-world scenarios showcase how COMPO*SED helps
users simultaneously explore linked component ensembles for the anal-
ysis of complex systems. The datasets exhibit different properties
regarding unique, shared, and related design parameters and criteria. In
all three scenarios, the visualization enabled users to apply constraints
and observe their combined effects on both the component and the sys-
tem level. In particular, it supported decision-makers in investigating
how a component-specific choice affects the system performance and
the availability of interoperable component variants.
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Fig. 8: Selectors are applied at three precedence levels: filter, lock, and mouseover. The resulting selections range from many-to-many over
one-to-many to one-to-one combinations. (a) A filter results in a set of alternatives that is refined by (b) a mouseover selecting system variants
with a particular diameter and gear ratio. (c) Locking them allows for (d) mouseover exploration of the involved component variants. (e) One gear
variant is locked to explore the compatible motor variants. (f) One of them is finally chosen as the best fit.

5.1 Usage Scenario I: Power Plant Operation
District heating describes a method for delivering space heating or hot
water to buildings via insulated pipe systems. Power plants that serve
as heat suppliers mostly fire fossil fuel, biomass, or waste. This usage
scenario stems from a long-term collaboration with engineers who are
responsible for the operation of a district heating power plant. The
power plant is located in Austria, and the data has been anonymized
to not reveal ownership. The power plant consists of two neighboring
blocks to burn different types of combustion material. One block uses
water, while the other block uses air as a cooling material.

Rather than interoperability, it is the joint production of heat that
prohibits an optimization of the blocks in an isolated manner. Operators
of the power plant can use Composite Parallel Coordinates to decide
which block to use to which extent in order to jointly produce a certain
amount of heat requested by the operation plan. If the outcome of one
block decreases, the outcome of the other block has to be increased.
This is typically based on the domain knowledge of operation engineers.
Using data analysis for power plant operation is still a novel approach.
The engineers only have basic experience in data analysis and data
visualization. With the Composite Parallel Coordinates, they can, for
the first time, study 1) how environmental conditions influence the
possible operation modes of the power plant and 2) how the parameters
of one block influence the operation of the second block. The data was
generated using a simulation model.

The heat produced by each block depends on various factors. Block-
specific design parameters include combustion material, cooling pa-
rameters, and the number of active valves. Environmental conditions
like temperature, humidity, and air pressure are shared by both blocks
because the blocks are equally affected by their changes. The different
consumptions and efficiencies associated with the produced heat in
each block are related and can be composed into system criteria.

Engineers need to constantly regulate the operation of the blocks
during the day. The main trade-off lies in producing a maximum
outcome while consuming the least possible amount of combustion
material. The goal is to distribute the production of the requested heat
to both blocks such that the yield, i.e., the difference between the price
for heat on the market and the operating costs, is maximized.

When loading the data into the Composite Parallel Coordinates, ev-
ery polyline in the plot corresponds to one possible operation mode
of the power plant (Figure 9). The two blocks are shown as separate
pathways. First, engineers can study the influence of the shared envi-
ronmental parameters on the operation of the power plant. Merging
the blocks’ individual consumptions via addition, they can observe
that high outside temperatures and low air pressure both lead to higher

Fig. 9: Power plant operation: a certain amount of heat is to be pro-
duced by a combination of blocks (top and bottom) that share the same
environment (center). High temperature and low air pressure lead to a
high cumulated consumption of combustion material (right).

overall consumption of combustion material and therefore high costs.
At the component level, only low number of valves is needed for the
air-cooled block to reach a high outcome when outside temperatures
are high. An analysis of the separated variable spaces of both blocks
shows how the number of valves of one block influences the operation
of the other block. Selecting operation modes with two active valves
for the water-cooled block (since this ensures a low consumption of
combustion material), a similar combustion-saving setting for the air-
cooled block relies on high air pressure and high air humidity – thus, it
highly depends on non-controllable environmental conditions.

The Composite Parallel Coordinates enable operators to see all
involved parameters at a glance (T1 Overview) and to understand
the dependencies between parameter settings of different blocks (T6
Navigation). With the novel representation, engineers are able to study
the effect of outside temperatures on the needs of combustion material
simultaneously for different blocks (T5 Connectivity). They are also
able to see how a block-specific decision for a number of valves affects
the energy production in the other block (T8 Partial Choice). In this
sense, Composite Parallel Coordinates open up new possibilities for
investigating multi-block power plants.

5.2 Case Study: Magnetic-Geared Motor Design
Magnetic-geared motors (MGM) are suited for industrial applications
that require high power densities, e.g., wind energy or ship propulsion.
To achieve the desired outcome, the driving motor and gear need to
interact effectively. This case study was informed by an observational

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3180899

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



study, where two engineers collaboratively worked with the tool. We
report on their qualitative feedback at the end of this section. The
one-and-a-half-hour remote study was recorded. Both engineers have a
background in mechatronics and years of experience in electric drive
design. Their daily work involves complex simulations and optimiza-
tions of geometries, magnetics, thermal conditions, and their interplay.
They are familiar with basic visualizations and brushing techniques, in-
cluding standard parallel coordinates. We primarily wanted to identify
aspects of our technique that are particularly relevant to the engineers’
decision-making. Thus, we did not impose a pre-defined setting but
emphasized free discussions on one of their real-world design optimiza-
tion use cases. We only prescribed the high-level task to analyze the
data and choose the most preferred motor-gear combination. After a
brief introduction to the functionality of the tool, the engineers explored
the Composite Parallel Coordinates on their own.

Data Analysis Our domain experts used COMPO*SED to analyze
392 combinations of motor and gear variants. The data result from
optimizations they conducted to investigate a side-by-side arrangement
of motor and gear [34]. The design parameters in each dataset represent
geometric properties and operating conditions. The gear ratio (G12) and
output specifications (N2, P2, T2) are common to both datasets (Figure
1a). Related criteria that might be assembled into system criteria are
component lengths (LFE), power losses (PV), and efficiencies (ETA).

The experts aim at parameter settings of motor and gear that lead to a
high overall efficiency with a low construction volume and torque ripple.
First, the experts observe how the motor and gear variants distribute
along the unique and connected parts of the system (T1 Overview).
Viewing the separate pathways, they notice a motor outlier with drasti-
cally lower efficiency (ETA MOT) than all other motor variants. They
also recognize two clusters of gear variants that significantly differ with
respect to efficiency (ETA MG) and torque ripple (T1 RIPPLE).

The primary objective is the efficiency of the entire system. At the
motor level, they filter out the outlier with low efficiency (T3 Filter).
Next, they merge the efficiencies of motor and gear using multiplication
(Figure 1b, ETA MG * ETA MOT). On the collapsed axis, they restrict
the overall efficiency to high values (T3 Filter, Figure 1d). From the
separate pathways, the experts notice that, to their favor, motors with
high current density (JS) and high copper losses (PCU) are excluded.

The secondary objective is the length as an approximation of the
construction volume. It needs to be filtered at the component level.
Otherwise, the engineers could not recognize undesired combinations
where the total length is acceptable, but motor and gear lengths differ
significantly. Restricting the motor and gear variants to small lengths
each (T3 Filter, Figure 1c, LFE MOT and LFE MG), the experts notice
that gear variants with preferred low torque ripple are not in the selec-
tion anymore. Undoing the previous filter actions one by one reveals
that the previous system efficiency maximization excluded them. This
correlation was not known before. The engineers expect it to originate
from problem-specific boundary conditions of the optimization.

The experts now face a conflict between a system-level criterion
and a gear criterion (T2 Competition). They decide to not sacrifice
the gear criterion too early and rather investigate the trade-off from
the reverse perspective. Brushing the cluster of gear variants with low
values for their unique parameter torque ripple (T3 Filter, Figure 1c,
T1 RIPPLE) leaves the engineers with about 50 MGMs still offering
acceptable system efficiencies (T6 Navigation, T8 Partial Choice).

The current selection is associated with short gears. From their
experience, the engineers anticipate that this could induce less output
power (P2) of the system (T2 Competition). However, the output power
should not be too low. Brushing the upper half of the respective shared
axis results in a dozen motor-gear combinations (T3 Filter). Merging
the components’ length axes via addition (LFE MG + LFE MOT)
reveals that the selection still contains short MGMs (T6 Navigation).
Other properties offer potential for further drill-down.

Two clusters of gear variants can be observed for the unique pa-
rameter flux density (OBS AIR): one with higher flux density and one
with low flux density. Brushing the latter results in six selected MGMs,
which still cover a wide range of system efficiencies (T8 Partial Choice).
One outlier with significantly higher total length is excluded.

The remaining five magnetic-geared motors are on par with respect
to their performance. Manufacturing benefits are thus pivotal. If gear
magnets are nearly squared, their mounting direction might get mixed
up, leading to wrong magnetization. If their distance is too low, they are
difficult to mount. After a detailed comparison (T4 Subjective Evalua-
tion), the MGM design offering the largest gear magnet rectangularity
(D BM HM) and distance (D PM3) is chosen (Figure 1e).

COMPO*SED allowed for constant switching between the compo-
nent level and system level and between overview and detail. Unlike
before, the experts did not have to go back and forth between individual
component optimizations. Instead, the component variants and their
dependencies could be explored simultaneously. At both levels, design
parameters and criteria could be equivalently used for real-time filtering.
This helped the engineers directly take into account the effects of each
component decision on the system operation. Rather than choosing the
first working solution, the engineers could learn which combinations
and what level of performance were achievable under which conditions.

Expert Conversation Although field observations and think-aloud
walkthroughs are common evaluation methods, performing them with
pairs of domain experts (E1 and E2) is rather rare [30]. Our motives
were slightly different from those of studies in computer-supported
cooperative work [38] and collaborative visualization [19], which pri-
marily aim to assess teamwork. First, the conversation resembled the
day-to-day practice of our experts, who analyze and discuss complex
optimization problems collaboratively. Second, we hypothesized that
a natural conversation between like-minded colleagues yields more
valuable insights than an artificial monologue of a single expert.

We found that the overview of all involved design parameters and
criteria – in particular their different roles – is the primary advantage of
Composite Parallel Coordinates: ”A lot of information is presented in
a clear and compact way” (E1). They also adequately support filtering
both at the component level and the system level: ”If you drag the
slider slowly, you can easily trace which variants drop out and at which
point they join back in” (E2). In fact, the ability to view and constrain
individual components while also observing system-level properties
was perceived as a significant advantage: ”If you would restrict the
system length, e.g., to 70 mm, you might end up with a 60 mm motor
and a 10 mm gear, which would simply be useless” (E1). Although their
routine involves making complex decisions collaboratively, multiple
users interacting in realtime with the same visualization is not desired,
as they can no longer understand what has led to the final outcome:

”The collaborative decision-making is about considering the next steps
together, not about speeding up the interaction” (E1). COMPO*SED
did not directly reduce the time required for a choice, but the experts
reported that it helps avoid optimization iterations. With existing tools,
their choice is based on a subset of the most important parameters. If
inconsistencies arise during validation, they enter an additional itera-
tion. Such iterations and the additional time are avoided by the more
comprehensive picture our technique offers: ”With COMPO*SED, we
can keep an eye on all parameters right from the beginning” (E1).

The collaborative analysis session was highly similar to pair-
programming: one expert, the driver, interacted with the visualization,
while the other, the navigator, kept an eye on effects and hinted at fur-
ther aspects to address. The conversation was free-flowing, interrupted
only by considerations of what to look at next. The engineers commu-
nicated by agreeing upon next steps, refining each other’s explanations,
and at times even correcting each other. They also drew the other’s
attention toward interesting regions in the visualization. Watching the
engineers learn not only from the data but also from each other provided
us with insights that we might not have gained otherwise.

5.3 Usage Scenario II: Camera-Lens System Purchase
The previous scenarios dealt with systems where one component vari-
ant was exclusively compatible with exactly one variant of another
component. However, some system design problems might require
the component variants to be combined more freely. An example are
cameras and lenses, where one camera body can be equipped with dif-
ferent lenses and one lens can be mounted on multiple camera bodies.
Aiming at optimized equipment, a photographer might use Composite
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Fig. 10: A photographer can choose from combinations of three cam-
eras (purple) and 13 lenses (green). Only components with the same
mount type are compatible (third from left). Component prices, weights,
and lengths are added up to system criteria (center).

Parallel Coordinates to decide whether to buy a lens to mount on her
semi-professional camera body or upgrade to a professional camera
body requiring new lenses due to a different mount type.

The former case requires the analysis of a one-to-many relationship.
Brushing her existing camera body, the photographer compares the five
compatible lenses (T5 Connectivity). They expand across a wide range
of prices, weights, and lengths (T8 Partial Choice) while exhibiting
similar ratings. The photographer excludes two lenses that are located
towards the upper ends of the price, weight, and length ranges while not
performing exclusively better in the remaining criteria. The remaining
three lenses have similar prices. The final choice for one of them cannot
be made at the component level. Instead, the photographer needs to
consider how their characteristics like sharpness, distortion, etc. work
together with the existing camera’s resolution, framerate, and so on.

To further improve the performance, it might be beneficial to replace
the camera body with a professional one (T9 Variant Replacement).
This requires the analysis of a many-to-many relationship. Brushing the
professional camera bodies, the photographer is left with combinations
of three camera bodies and 13 compatible lenses (Figure 10). To not
miss a preferable combination, the photographer first looks for variants
that yield a good performance while being compatible with many other
variants (T7 Key Component Variants). Applying her total budget as a
constraint, the camera body with the highest rating and a high resolution
remains. It is still compatible with six of the 14 lenses, leaving enough
room to further exploit the optimization potential at the lens level.

6 DISCUSSION AND LIMITATIONS

Parallel coordinates are certainly one of the more complex visualiza-
tion techniques. From the results of an earlier design study [8], we
were confident that conventional parallel coordinates are accessible
for analysts performing single-component multi-criteria optimization.
Nevertheless, the question remains whether the added complexity of
the novel parallel coordinates variant matches its increased usage value.

Composite Parallel Coordinates are not merely two linked visualiza-
tions. A distinctive contribution of our technique is the possibility to
jointly explore the variants of multiple components, their combinations,
and constraints. The relations between system and component proper-
ties can be perceived from the side-by-side layout and the interaction
with composite axes. In particular, our approach shows one-to-many
and many-to-many combinations of matching variants explicitly by
extending the idea of linked axes across components. Our strategy
follows the recommendation to integrate views with an explicit linking
when relations between items of different datasets are of particular
importance [21]. The cost of added visual complexity is mitigated by
filters, which our experts perceived as a powerful tool. In contrast, the
scenarios did not require the parallelogram strategy to avoid line cross-
ings. The numbers of polylines seem to have been manageable, which
leaves us with the open question at which point the strategy develops its
full potential. A number of techniques have been proposed to address
different issues associated with dense line charts, including density
estimation [16], edge bundling [53], and importance-driven blending

Fig. 11: A sample case with three components where A interacts with
B and C. Left: collapsable axes are dotted. Center: all composite axes
are collapsed. Right: three complete system variants shown.

order [47]. These techniques can be transferred to Composite Parallel
Coordinates, potentially involving a particular treatment of component
connections. To what extent the explicit but visually complex depiction
of many-to-many relations simplifies the analysis is yet to be examined.

We demonstrate the working principle for two components. A major
limitation of the composite layout is that it does not effortlessly scale to
an arbitrary number of components. While the vertical layout is open
to stacking multiple components, any component can only be directly
connected to two neighbors above and below (see Figure 11). The
vertical positioning according to component links is remarkably similar
to the axis-ordering problem of conventional parallel coordinates. We
hypothesize that existing solutions (e.g., linearization of node-link rep-
resentations, interactive reordering, or aggregation) can be adapted to
overcome this limitation on the vertical axis. Stacking more than two
components leads to more complex branching of the polylines, requir-
ing dedicated rendering and interaction techniques to trace individual
polylines. Showing relations between non-adjacent components will
likely introduce visual clutter. Additional ranges on the horizontal axes
are needed to depict related attributes of non-adjacent components (see
the second gray area in Figure 11, where parameters of all three com-
ponents are totalized). With a certain number of components making
up the system structure, a dedicated navigation strategy (e.g., using a
minimap) might generally be required.

Another limitation is that composite axes represent only one-to-one
mappings of related properties from different components. Where
other constellations are required, e.g., one-to-many mappings of related
properties, a more flexible representation of composite axes is needed.

The validation scenarios showcase systems with different relations
between components that can be explored using COMPO*SED. They
indicate that our technique adapts to different types of data and tasks,
providing an effective means for co-dependent multi-attribute choices.

7 CONCLUSIONS

We present Composite Parallel Coordinates for the visualization of
distinct but related datasets to help decision-makers choose the most
preferred design variant of a multi-component system. This requires
working through a series of co-dependent multi-attribute choices. Vari-
ants of single components are depicted in juxtaposed parallel coordi-
nates plots. Where design parameters or criteria are shared or related
between components, the associated axes can be merged. Dedicated
interaction patterns enable analysts to explore multi-component alter-
natives while considering unique component properties and emergent
system properties. Qualitative feedback from three real-world scenarios
and an observed expert conversation demonstrates the effectiveness of
our technique for multi-component optimization. Our future research
will focus on scaling the technique to more than two components,
introducing more flexible specifications of system properties, and inves-
tigating the technique’s effectiveness for multi-topology optimization.
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