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Kurzfassung

Die Datenvisualisierung ist eine gängige Methode, welche bei der Analyse von Daten zum
Einsatz kommt. Sie findet in diversen Bereichen Anwendung, wie etwa dem Finanzsektor,
in der Produktion und in der Forschung. Im Forschungsbereich der Datenvisualisierung wer-
den neue Methoden zur Visualisierung von Daten entwickelt. Vergleichsweise wenig wird an
Evaluierungsmethoden für Datenvisualisierungen geforscht. Da es zwar verschiedene Ansätze
für die Evaluierung von Visualisierungen gibt, aber keinen Standard, entwickelten wir eine neue
Evaluierungsmethode, welche auf der Basis von Pixeln arbeitet. Ziel dieser Methode war es
zu evaluieren, wie gut eine Visualisierung skaliert, in Abhängigkeit von dem verfügbaren Platz
am Bildschirm. Für diese Methode berechneten wir drei verschiedene Verhältnisse, welche
sich an bestehenden Konzepten orientierten (data-ink ratio, foreground-background ratio, dis-
criminability ratio). Diese Verhältnisse wurden über variierende Bildschirmgrößen (in Pixel)
beobachtet, um eine Aussage über die Skalierbarkeit einer Visualisierung zu treffen. Um diese
Evaluierungsmethode zu testen, wurden V-Plot Matrizen in die Software Visplore by VRVis
integriert. V-Plots sind eine Methode um die Verteilung von Daten zu visualisieren, welche
erst kürzlich entwickelt wurde. Diese Implementierung wurde dazu genutzt ein Test-Datenset,
bestehend aus 375 Bildern von unterschiedlich konfigurierten V-plot Matrizen, zu exportieren.
Die Berechnung der drei Verhältnisse wurde als Python Script realisiert. Der Trend der berech-
neten Verhältnisse, sowie diverse Hypothesentests wurden analysiert und ausgewertet. Diese
zeigten, dass einzelne V-Plots bereits auf einer Fläche von 100x160px effektiv darstellbar
waren. V-Plot Matrizen mit einer Dimensionalität von 6 konnten ab einer Größe von 180x320px
effektiv dargestellt werden.

Schlagworte: Datenvisualisierung, Visualisierung Evaluierung, V-Plots



Abstract

Data visualization has become state of the art when analyzing data in various application do-
mains like production, finance and science, among others. Therefore, research in the field of
data visualization is concerned with the development of novel visualization techniques. Com-
paratively little research is dedicated to evaluating data visualizations. We looked into existing
techniques to evaluate data visualizations on their scalability. Finding, that there is no state of
the art method, we propose our own pixel-based evaluation technique. Its goal is to evaluate
the scalability of a data visualization with respect to the available screen-space. It works by cal-
culating three different ratios that were based on existing concepts (data-ink ratio, foreground-
background ratio and the discriminability ratio). The changes of these ratios are then observed
over different resolutions to make a statement about the scalability of the visualization. To test
our proposed evaluation method, we integrated a v-plot matrix visualization into the software
Visplore by VRVis. V-plots are a novel data visualization technique to visualize distribution data
and were introduced recently. We used this implementation to export our test data set, that con-
sisted of 375 images containing various differently configured v-plot matrices. The calculation
of the proposed ratios was then realized as Python script and applied to the test set images. By
observing the resulted trends of the ratios and through conducting hypothesis tests, we found
that the ratios indicated that v-plot matrices up to dimensionality 6 could effectively be shown
on a resolution of 180x320px and larger. Whereas single v-plots could be displayed effectively
on a resolution of 100x160px and above.

Keywords: Data visualization, Visualization evaluation, V-Plots
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1 Introduction

Data analysis [68] describes all the steps that are needed to transform data to gain useful in-
sight from it [68]. Common tasks of data scientists [40] include the validation of a specified
model or hypothesis based on the gathered information as well as identifying recurring patterns
in a dataset [40]. This type of data analysis is also called confirmatory data analysis (CDA).
Another application for data analysis is the so-called exploratory data analysis (EDA). In this
case, no pre-defined hypothesis is available that needs to be validated, but the data scientists
are free to explore seemingly interesting aspects of the data and further inspect those in detail
[73]. Behrens [6] describes CDA and EDA as complementary methods to analyse data. As
often, in the early stages of data analysis, there are usually many questions rather than a single
one, that need to be answered to understand the data [3]. Therefore, the data is inspected
through EDA first to refine stated hypotheses and corroborate the mental model of the data
[16]. Subsequently, CDA is applied to either confirm or reject the proposed hypothesis.
Data analysis has become state of the art in many application domains and industries like
power generation [47], production [49], finance [83] and in various scientific fields [66]. With the
growing capability to gather information at a faster rate than the data can be analyzed, an infor-
mation overload is created [65]. This circumstance can be observed to be increasing over the
recent years, and was made known by the term Big Data. In conjunction with the appearance of
Big Data, the term Datafication occurred, describing the processing of various phenomena (be
it aspects of the human life or measurements taken during industrial processes) into data [50].
With this, the importance to automate at least parts of the data analysis process increases. In
cases where no automation can be applied, it is important to utilize techniques that turn the
information into a form that is easier to understand for data analysts. For this purpose diverse
software tools are being developed and maintained to assist with this tasks. An introduction to
some of these tools were given by Ali et al. [2] and Caldarola and Rinaldi [14]. Where Ali et al.
[2] give a more in-depth description of various software, Caldarola and Rinaldi cover a bigger
variety of tools.
Data visualization [78] is a prominent way to make loads of information more comprehensible.
The data visualization process describes all the steps necessary for creating graphical rep-
resentations that encode an underlying dataset. These graphical representations are usually
called plots [44].
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1.1 Data visualization

The term data visualization is commonly understood as "a graphical representation of data
or concepts" [78]. It was originally used to describe the process of forming a mental image.
Data visualization is influenced by the development of many research fields, including statis-
tics, psychology and computer science [5]. The three main goals of data visualizations are
presentation, confirmatory analysis and exploratory analysis. For presentation, the aim is to
pick a visual representation that allows for a better communication of the underlying informa-
tion. As emphasized by Heer et al. [27], the creation of a data visualization for the purpose of
presentation depends strongly on the end-user. This is not only, but mostly, due to the fact that
data visualization as means to present information is used not only in specialized fields, but can
also be seen being used increasingly often in everyday media as a part of infographics [70].
Confirmatory data analysis (CDA) is concerned with either proving or disproving a hypothesis.
Exploratory data analysis (EDA) describes the undirected search for interesting aspects of the
data.
With the "Milestone Project", Friendly [22] made an effort to document the important events in
the history of data visualization from its dated first occurrences back around the 10th century
to modern times. The history of data visualization is divided into eight epochs. The earliest
forms of data visualization found were geometric diagrams, displaying positions of stars and
celestial bodies, but also maps to support navigation when exploring. Along with important
advances in the field of mathematics and statistics, also visualization techniques were further
developed and improved. Statistical graphics experienced a great expansion in the first half of
the 19th century. Data visualization techniques that are widely known nowadays were invented
back then. Among those visualizations are bar charts, histograms, pie charts, line graphs, time
series plots, and many more. Soon after that, attempts were made to display multivariate data.
Few visualization innovations were made following that time, until the middle of the 20th century.
With further research in computer graphics and developments in data analysis, new possibilities
for data visualizations arose as a result. Since around 1975, data visualization has become a
research field that spans multiple research areas. Nowadays, computers and specialized soft-
ware tools support data scientists in the visualization process, so they can better focus on the
task of analysing the data without having to visualize it manually. Not only is visualization soft-
ware developed in academic fields, but their use is also becoming more and more established
in the fields of business intelligence [20].

Fisher and Meyer [21] propose that data, tasks and stakeholders are the main factors in-
fluencing which visualization to choose that will be effective for the end users. They further
accent that not every task needs to be supported by a visualization. Tasks that can be put into
a precise question can often be answered by computational means. More vague questions that
leave room for interpretation with their answers tend to really profit from a visual representation.
Visualizations are often used in combination in so-called dashboards which enables performing
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multiple analysis tasks. Pappas and Whitman [59] point out that the assembly of a dashboard
is a complex task where various factors need to be taken into consideration. This includes the
capabilities and background of the end user, the task and the data at hand. Creating effec-
tive data visualizations is not an easy task but there are quite a few resources concerned with
guidelines for the creation of expressive visualizations, like the work by Midway [55]. Among
many others, Weissgerber et al. [79] and Cleveland [17] specifically looked into the generation
of effective visualizations used in scientific papers, as these seem to contain quite an amount
of visualizations that would benefit from improvements.
In this thesis the focus will be on the visualizations specifically designed for data distributions.

1.2 Visual analytics

Visual analytics describes the usage of data visualizations and automation to support humans
in analyzing data, as opposed to purely visual approaches and to Data Mining, which describes
the automated process to extract interesting and useful portions of data [13]. The visual an-
alytics approach was formed because the purely visual as well as the purely automated ways
have their limitations [42]. The limitations of Data Mining methods to analyze data lie in the fact
that no expert knowledge is involved in the process, often leading to unsatisfying solutions to
a problem. The possibility to analyze data by means of a visualization is strongly dependent
on the dataset size. This is due to the fact that with a larger dataset size, computation times
and storage space increase. The interactive visualizations of massive datasets is an especially
difficult challenge, as the visualization has to stay responsive to user input while performing
computations. Along with the development of data visualization techniques, the discipline of
visual analytics developed. As formulated by Thomas and Cook [72]: "Visual analytics is the
science of analytical reasoning facilitated by interactive visual interfaces.". As many other dis-
ciplines that involve the visualization of data or information, visual analytics makes use of the
human visual system that provides the highest bandwidth from a computer to the human, in
comparison to the other cognitive systems [78]. As opposed to information visualization, which
is mainly concerned with the visual representation of abstract information, the term visual an-
alytics combines decision-making, visualization, human factors, and data analysis [43]. As
stated by Keim et al. [43], this usually involves utilizing computers and automated algorithms
to tackle a data analysis task. The main purpose of visual analytics is to gain insight on the
data from a visual representation. Andrienko et al. [4] describe visual analytics as a process
to gain knowledge about or understand a so-called subject, which describes a certain thing or
phenomenon and in some cases also the data itself. The analysis of this subject then includes
not only understanding but can also involve creating a computer model of it, which can in turn
be the subject to the analysis, as knowledge is to be gained about the model. This shows that
performing a visual analysis, the subject of analysis may vary in the process. Usually some
interaction with the visualization is also possible. As stated by Keim et al. [44], the main tasks
of the visual analytics process are information gathering, knowledge representation as well as
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interaction and decision making. Data analysis is driven by mathematics and statistics. It re-
lies on the human capabilities to perceive the information and make relations and conclusions
based on them. The process of visual analytics includes data analysis, visualization and hu-
man factors. Through these diverse factors, the visual analytics research field also profits from
research in the fields of data management, knowledge representation, discovery and statistical
analytics [44].

Figure 1: The visual analytics process described as transformation. The transformation function takes
the data as input and yields insight I. S describes the subset of data gained through the pre-
processing Dw. Based on that data either a hypothesis H is formulated and then visualized
(V) or vice versa. User interactions can be performed on hypotheses and visualizations U. The
image was taken from [44].

Keim et al. [44] introduce a formal description of the visual analytics process. Further they
suggest to see the visual analytics process as a transformation that maps the source data set
to the insight gained through the visual analysis process, as depicted in Figure 1. The traversed
steps include preprocessing of the data. It can be achieved through data cleansing, selection
or integration. Data preprocessing can also mean to visualize the data in some form to reveal
patterns. The next step of the process is the visualization of either the data or a hypothesis,
which would include the step of generating this hypothesis first. A very integral part of the pro-
cess is the user interaction. The user interaction can either affect only visualizations or only
hypotheses. This visual analytics process is usually iterative, meaning the user can adapt input
parameters repeatedly and apply the transformation in order to gain the most insight out of it.

1.3 Visual comparison

A comparison task can be executed on data from different sources or on data from one source
that contains categorical differentiation. The act of comparison can also be understood as "the
task of formulating a relationship that holds for particular subsets of the data." [73]. This com-
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parison can either be done on the data level or based on an image containing a visualization
representing that data [58]. In this chapter the latter will be discussed.

Visual comparison, also referred to as comparative visualization, is another important area
where visual analytics is applied. Its purpose is to compare multiple datasets or subsets of one
dataset with each other. Various methods can assist the comparison, so that the viewer does
not have to rely on their eyes and brain only. Although a statement can be made through mere
visual observation, computations expressing the similarity of the compared data can help make
a statement evident.
Tominksi et al. [73] analyzed what techniques, which are inspired by natural behaviour, can
assist the comparison process. They observed how people tackle the task of comparing printed
data visualizations on paper. After picking some seemingly interesting sheets to be studied in
detail, those pages were compared. Comparison usually happened by laying them out side by
side, overlaying sheets and holding them against a light source to seemingly merge the data or
overlaying sheets and folding them back and forth to discover differences in the data. For the
purpose of their work, they present a concept that describes the usual comparison process. It
consists of three phases, which are commonly traversed when comparing:

1. Selecting which pieces of information of the data should be compared.

2. Arranging the selection in a way, that the comparison is made easier.

3. Actually comparing the selected and arranged data.

As Tominski et al. [73] stated, to form a mental model of the data, supplying a way to in-
teract with the visualization is important. Such interaction techniques include: Navigation
techniques like panning and zooming to navigate and focus on certain areas of the data or
concentrate on the overview. Brushing and linking to select certain areas of the dataset that
are of interest. Layout manipulation might ease the comparison for example through position-
ing visualizations, that are to be compared close to each other.

Gleicher et al. [24] proposed a taxonomy for comparison designs. It divides them into three
categories: juxtaposition, superposition and explicit encoding.
Juxtaposition, or separation, displays the information separately and independently. Juxta-
position designs can be applied to all visual representation techniques. An example would be
two plots next to each other. It can also mean that objects are displayed after one another, for
example blending between two plots. These separate representation means that the user has
to memorize parts of the information, while switching between the plots to make a comparison.
It can be helpful to place the plots close to each other. Comparisons based on juxtaposed
designs rely heavily on the users’ memory. With juxtaposed designs it is also easy to automate
the search for difference in the visualizations.
Superposition, or overlay, displays the information in the same space and at the same time.
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For example, one plot is drawn transparent on top of the other or even occluding it. This re-
quires the information to inhabit the same coordinate system. To transform the information into
the same space, computation is usually used. It also means that this design does not scale well
with lots of dense data, causing unwanted occlusions and clutter.
Explicit encoding encodes relationships of the datasets directly and visualizes them. There-
fore, relations between the elements have to be established. This requires the visualization
designer to have an idea of what relationship the users are looking for, and a way to compute
the encoding. An example would be the calculated difference per point between two datasets,
visualized in a plot. Comparisons with explicit encoding designs don’t rely on the users memory
but on the computation of the encoding.
These three categories can be seen as the building blocks for comparison designs, but also
allow for hybrid combinations of them. Explicit encoding designs can also be thought of as
replacing objects with newly computed objects, representing the relationships. Those newly
computed objects may have the same type as the original data or another form. Explicit en-
coding designs are usually used in combination with other forms of visualizations to counteract
decontextualization. For that reason they are also often used in a hybrid approach with either
juxtaposition or superposition designs. Another tool to support comparison is animation, where
elements are displayed one after the other. It can be seen as a juxtaposition in time. Yet another
animation technique, but categorized as superposition, is the "blink" technique. In this case, the
elements are placed in the same place, but it can be alternated which one is seen at any given
moment.
This taxonomy can assist as a guideline when tackling the development for a new visual com-
parison design. Gleicher et al. [24] supply even more detailed strategies when creating new
comparison designs. When designing new visual comparison techniques, it should be remem-
bered that comparison consists of multiple tasks performed by the user.

Figure 2: Juxtaposition, superposition and explicit encoding exemplified through simple filled broken line
graphs. Juxtaposition shows two different datasets one below the other for comparison. In
a superposition arrangement, the different graphs are overlaid and blended with each other.
Explicit encoding is created through visualizing only the differences between the two graphs in
the shape of a new one.
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Interaction techniques like mentioned earlier are invaluable in dedicated modern software
tools to support visual comparison. These tools usually include brushing and linking to high-
light the coherence between elements. It can also be very helpful for the user to be able to
rearrange plots for easier comparison between them. Analytical tools as well as statistical tools
can also improve the readability of visual designs and help to link more complex information.

2 Visualization techniques

As mentioned earlier, depending on the type of data, different visualization techniques are ap-
propriate for its representation. In the context of this thesis, we focus on visualization techniques
for data distributions. In statistics, a data distribution refers to a function, which describes which
possible values occur in a dataset and in which quantity [1]. Usually the quantity is either given
as a number denoting the counted occurrences of a value, or it is given relative to the total num-
ber of values in the dataset, as percentage. A data distribution function is often created based
on existing values. This function can then be used to make a prediction for the distribution of
values that are not available in the dataset [36]. The prediction can either be an exact value,
or be a statement that the value in question is higher or lower than a specific figure. For many
distribution functions the average value (e.g., the mean or median) and a measurement for the
spread of the data (e.g., standard deviation) is used to predict the distribution. The normal
distribution for example, uses the mean and standard deviation for calculations.
Visualizing data distribution allows to get a quick overview and perform an in-depth analysis.
Visualization techniques for data distributions usually use two dimensions. It is most common
to apply the possible range of values that the distribution function covers to one axis. The other
axis represents how often those values actually appear in the data. Depending on the sampling
of the dataset at hand, the axis denoting the value range can either be discrete or continuous
[41]. In the discrete case there are a number of countable, limited values the data can take
on. Continuous ranges are used whenever an uncountable set of values can be taken on. This
goes for for continuous sampling over time and whenever the sampled value may lie in a range
between two values. Note that the concept for continuous sampling is more theoretical, be-
cause real continuous sampling is impossible due to the fact that the sampling rate cannot be
continuous. For example if samples are taken over time, they are taken in a specified interval
(eg. every second, ever millisecond). Also, the value a sample can take on is limited by the
precision that it is represented with.
Visualization techniques for data distributions are often used to represent the distribution func-
tion approximating the dataset or its distribution as a whole, but it is also common to represent
the underlying data through displaying aggregated statistics.
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2.1 Data distribution visualization techniques

Over time, many visualization techniques for data distributions have been established. They all
serve the purpose to either visualize a distribution, a derived distribution function or aggregated
statistics. In this Chapter, common visualization techniques that will be of importance in the
following chapters are introduced.

2.1.1 Histograms

A widely known visualization technique for data distribution is the histogram as depicted in
Figure 3 on the left side. Histograms are based on bar charts [7]. Bar charts usually encode
the range of values on the x-axis, and the count of their appearances in the underlying data on
the y-axis. In a bar chart, to each value on the x-axis, a bar is drawn, whose height represents
the frequency of the underlying dataset. In bar charts, one bar represents the frequency of
a single related value. The bars in histograms on the other hand, encode the frequency of
multiple values in a specified range. These value ranges are called bins. Binning is usually
performed uniformly. This means that the whole range of available values is divided by a desired
factor. The resulting intervals are then used as bins. The bin width is flexible but should stay
consistent over all bins. A small bin width might lead to very peaky histograms and obscure the
trend of the underlying data. Choosing a very wide bin width might lead to losing interesting
details of the dataset. Sahann et al. [67] recently surveyed how many bins are actually needed
for users to perceive the distribution of the underlying data. They showed that a higher bin
count generally leads to a better estimation, where about 20 bins seemed to be the threshold
where no measurable improvement could be found in the conducted user study. When working
with discrete data, one bin may correspond to a single value of the data. When working with
continuous data, binning must be applied. Variations of the histogram are mirrored histograms1

and stacked histograms2. Histograms and their variations are especially useful for local and
global analysis tasks, but are of limited use when performing aggregated analysis tasks [11].

2.1.2 Density plots

Similar-looking to histograms are density plots [80]. An example for a density plot in comparison
to a histogram is depicted in Figure 3. Density plots are two-dimensional graphs, where one
axis encodes the possible value range and the other axis counts the frequency of how often
this value appears in the data. The points used for drawing are not sampled directly from the
dataset. Usually an estimation procedure is applied instead to create a curve that meaningfully
represents the data. Common estimation techniques are the kernel density estimation (KDE)
and shape-based estimation [69]. Both techniques supply tweakable parameters to allow for

1https://r-graph-gallery.com/190-mirrored-histogram.html
2https://chartio.com/learn/charts/stacked-bar-chart-complete-guide/
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Figure 3: The age distribution of titanic passengers visualized. Left: Histogram visualization. Right: The
same underlying dataset visualized as density plot. The used function for density estimation
was the kernel density estimation with a Gaussian kernel and a bandwidth of 2. Images taken
from [80].

adjustment of the curve. Like the bin width in histograms, those parameters have a direct effect
on the visualization and can lead to overly peaky curves, or to losing important detail through
over-smoothing. One pitfall of density plots that should mentioned is that they might appear
to represent data, where actually no value exists. This phenomenon usually happens at the
tails of the curve. Based on the points gained from the estimation procedure, a continuous
line is drawn. If desired, the area below the line may be drawn filled. Due to the fact that
histograms can easily be drawn by hand, they have been the preferred method to visualize data
distributions for quite a while. With the possibilities of computational powers nowadays, density
plots supersede the traditional histogram as visualization more and more. Density plots also
work well when visualizing multiple categories overlaid in one graph as depicted in Figure 4.

Figure 4: Overlaid density plots visualizing the butter fat contents for milk of different cow breeds, cate-
gories encoded as colors. Image taken from [80].
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2.1.3 Box plots

A widely known and used visualization technique concerned with the display of aggregated
statistics is the box plot [82]. Box plots have become the standard technique, whenever the
requirement is to show the minimum, maximum, upper and lower quartiles and the median of
a dataset [61]. Box plots along with their variations are often used to compare more than one
dataset. The comparison of multiple box plots is quite straight forward, as only the five shown
characteristics have to be checked against each other. Box plots are also very space-efficient
representations, as their horizontal space used is not directly linked to the underlying data set.
This allows for the width of the boxes to be scaled as required. Due to their simplicity, many
different visual versions of the box plot exist [45]. Its simplicity also leaves room to expand the
type of information visualized in a box plot, eg. by additionally displaying the data density as
scatter-plot, as shown in Figure 5.

Figure 5: Left: Data visualized as points of a scatter-plot. Right: The same underlying data represented
as box plot. Further the anatomy of a box plot is exemplified. Image taken from [81].

Due to its focus on only five characteristics, many other important attributes of the data stay
hidden in box plots. To enhance their utility, they can be expanded by the visualization of the
underlying data density in the shape of a density plot. The samples taken for the density can
be varied in their intervals. One way is to only sample at the median and the quartiles, which
creates a Histplot [7]. The Vaseplot on the contrary also uses sample points between the
median and the quartiles [7].
Violin plots are another common extended version of the box plot [30]. In addition to showing
statistic measures they also visualize the underlying data density as density plot. The rectangle
between the quartiles in the box plot is colored solid black and the median is indicated through
a small white circle with the goal to make understanding and comparing multiple violin plots
easier. There are many more variations of the box plot. Further variations worth mentioning
are bean plots [39], error bars and the gradient plot [11]. In regards to the user study by
Blumenschein et al. [11], the box plot and its possible variations perform well when used for
aggregated and global analysis tasks [11].

10



2.2 Hybrid charts

The visualization techniques discussed in Chapter 2.1 all focus on the representation of only
one aspect of the data and/or were specifically designed to perform certain tasks. Therefore,
attempts were made to develop a visualization for data distributions that is able to represent
multiple aspects of a dataset and/or to perform multiple tasks with the aid of one single plot.
Such combinations of visualizations are also referred to as so-called hybrid charts. Hybrid
charts are usually achieved by the combination of two or more visualization techniques.
De Oliveira et al. [18] introduced a hybrid chart combining parallel coordinates and multidi-
mensional projection. Another approach to a hybrid visualization technique was introduced by
Potter et al. [62] in the form their hybrid summary plot, which is an extended box plot with the
ability to additionally visualize "descriptive statistics to concisely present data with uncertainty
information".
In the context of this thesis the focus lies on a quite recently introduced hybrid chart for the
representation of data distributions, the v-plot.

2.2.1 V-plots

Another type of hybrid chart was developed for the comparison of data distributions and is
called v-plot. Blumenschein et al. [11] introduced v-plots in 2020 along with them the v-plot de-
signer3, an online tool to help find a fitting v-plot configuration for a given analysis task. There
are quite a few specialized visualization techniques to support a single specific analysis task,
but to support more than one task simultaneously, they usually must be used in combination.
V-plots were designed to simultaneously visualize information to handle multiple distribution
comparison tasks. V-plots combine all three categories of the taxonomy of Gleicher et al. [24]:
Juxtaposition is achieved by viewing two mirrored plots next to each other. The overlay of the
various visualizations is categorized as superposition. And with the statistical measures and
direct difference encodings, the requirements to qualify as explicit encoding are fulfilled. This
allows for making conclusions about the data set on global, local and aggregated scale concur-
rently from just one plot.
The "V" in the v-plot originates from the roman number five, which is the maximum number
of layers that can be used in a v-plot. Those layers display a variety of data distribution visu-
alization techniques and labels. V-lots make use of the fact that all visualization techniques
they support can be drawn mirrored. This immediately enables comparing the data distribu-
tions of two datasets or categories. The default v-plot consists of the following layers, which are
exemplified in Figure 6:

• Layer 1: The base layer is a mirrored bar chart, which visualizes the distribution fre-
quency.

3https://v-plot.dbvis.de/!/plot
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• Layer 2: On top of it is a density distribution to represent distribution peaks properly.

• Layer 3: The next layer is either a difference shape or histogram. This encodes the
absolute difference between the two datasets visualized by the v-plot.

• Layer 4: The fourth layer allows for an overlay containing a visualization for statistic mea-
sures, enabling viewing explicit encoding. An example for this layer would be showing the
median and standard deviation.

• Layer 5: Atop those four layers, labels (e.g., a title, a grid, annotations) can be added to
round up the v-plot and further enhance its comprehensibility.

Figure 6: (A) V-plot with all its five layers visible. (B) The base layer containing a mirrored histogram.
(C) The second layer contains the density distribution. (D) + (E) Contains a direct difference
encoding as either histogram or shape. (F) The fourth layer shows statistic measures. (G) The
top layer displays the labels of the plot. Image taken from [10].

The qualitative expert user study conducted by Blumenschein et al. [11] suggested that the
v-plots are intuitive and efficient when it comes to comparing data distributions.

2.2.2 The v-plot matrix

V-plots are useful when comparing two distributions at once. An approach to compare more
than two data distributions is the v-plot matrix. Displaying multiple v-plots in a matrix arrange-
ment simultaneously allows for the comparison between even more data channels than within
a single v-plot. The proposed matrix is of a square shape. Each column and each row contains
a data channel or category. This results in one v-plot for every combination of data channels or
categories. A challenge concerning the v-plot matrix is to keep it readable and to avoid clutter
and occlusion. To maintain readability, Blumenschein et al. [11] suggest supplying the possi-
bility to sort the v-plots in the matrix automatically, e.g., by similarity. This way, v-plots in which
the two represented distributions are very similar, are placed somewhere in the matrix, where
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other v-plots have a likewise similarity (e.g., upper left corner of the matrix contains v-plots with
high similarity and the lower left corner has v-plots with low similarity). As further countermea-
sures, the layers which are visible in the v-plots are reduced. An example for this would be to
only show the direct difference encodings on both sides. To make the best use of the avail-
able space and prevent repetition, the matrix is split diagonally. The v-plots that would lie on
this diagonal contain only matches of the same data channel or category, meaning they would
visualize two identical sides. The decision was made to not display them to prevent drawing
unnecessary attention. For further sufficient use of the available screen space and to avoid
repetition, the visible layers of the v-plots above and below the diagonal differ. This way, there
are always two alternate representations of the same juxtaposed distributions, without having
to worry about showing too much information in just one v-plot and risking clutter and occlusion.
The matrix created by the v-plot designer is depicted in Figure 7.

Figure 7: The v-plot matrix visualized by the online v-plot designer. It visualizes a small dataset made
available by the v-plot designer to present the matrix and to show what underling data structure
is expected by the v-plot matrix to construct it. In the upper right, datasets are visualized as
density plots, whereas the same dataset pairings are displayed as direct difference encoding
with histogram in the lower left diagonal. Image taken from [9].

2.2.3 V-plot example use cases

To give a better understanding of how to practically work with v-plots, exemplary use cases for
analysis tasks are elaborated in the following two subsections. Further use cases that utilize
v-plots and the v-plot matrix can also be found in the related work by Blumenschein et al.
[11]. In order to present meaningful use cases, we found a dataset that represents realistic
conditions without privacy restrictions and open for free use. In our case, the chosen dataset
contains anonymized recordings of various measurements that were made in the process of
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power generation.

About the dataset

The dataset used to create the v-plot images for the evaluation is the Photovoltaic Solar Panel
Energy Generation data (PV) dataset [60] with some modifications. Its licensing along with the
performed modifications can be found in Appendix A.1. The dataset contains data channels
relevant for the production of photovoltaic energy including environmental influences like volt-
age, current and weather data. The dataset contains measurements in 10 minute intervals that
were collected covering 480 days, resulting in over 171 million individual values.

Example 1: Solar radiation

Since the PV dataset contains data relevant for power production using photovoltaic installa-
tions, we decided to look at a use case also relevant for this application. This is why we will
look at the recorded solar radiation of the PV dataset as part of this first use case demonstra-
tion. Solar radiation can be measured in different ways. Sicne we do not know the exact way
it was measured, we assume that the recorded data includes direct i.e., directly hitting sunlight
and indirect i.e., sunlight bounced and reflected from other different sources) solar radiation.
Solar radiation is usually measured using kW/m2 and results in values between 0kW/m2 and
1kW/m2. By looking at the available data, we assume that in this case the solar radiation is
given in W/m2, since the measured values lie between 0W/m2 and approximately 1000W/m2.
Based on the recorded data we want to find out at which locations the solar radiation is notice-
able higher or lower, telling us which solar plants receive more or less sunlight. We generated a
v-plot matrix of dimension 5, displaying one v-plot for all combinations of locations that have so-
lar radiation data available. To get an overview, we visualized the data frequency as histogram
with 20 bins. Atop of that we made the direct difference encoding visible, also as histogram.
To further quickly analyze the mean and spread of the data, we showed the statistic measures.
They show the data mean and its standard deviation with an area as connection. As can be
seen in Figure 8 on the left, the first impression that the visualization gave us, was that the solar
radiation is quite similar among all locations as they all have their counts peak at values be-
tween 0W/m2 − 70W/m2. Looking at the statistic measures, the data recorded at Fantasytown
revealed a much smaller spread than the other recordings. To investigate that, we chose to
look into one isolated v-plot that contains the Fantasytown data. As second location we chose
the solar radiation recorded at Bright County, because it seemed to show the widest spread of
values among others. Along the y-axis it also seemed to have recorded the most high values.
This single v-plot can be seen in Figure 8 on the top right.

Looking at the comparison of Bright County and Fantasytown, our first assumption was con-
firmed. Almost all recorded values at Fantasytown lie in the range of 0W/m2 − 70W/m2,
99,62% of them to be exact. Bright County, on the other hand, which we assumed to
have the highest spread, only recorded 61,06% values in that range. Zooming in a bit
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Figure 8: Data from the PV dataset containing the recorded solar radiation at five different locations.
Left: The data visualized as v-plot matrix using a mirrored histogram, direct difference encod-
ing in the shape of a histogram and statistic measures with an area as connection. Top right:
Extracted a single v-plot comparing the insolation of Fantasytown and Bright County from the
matrix to view in more detail. Bottom right: Zooming along the x-axis reveals even further de-
tail, making especially the nuances of the distribution of the Fantasytown insolation data better
visible.
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further (see Figure 8 on the bottom right), we see that Fantasytown had its few highest
recorded values at 490W/m2 − 650W/m2, while we measured solar radiation up to values
of 9800W/m2 − 1050W/m2 at Bright County. This means that throughout the recorded time
span, Fantasytown generally recorded lower values and never logged particularly high values
compared to the other locations. Therefore, we found out that Fantasytown received less inso-
lation over the recorded time span, while the other locations seem to receive similar amounts of
sunlight with less noticeable differences. Having generally lower solar radiation at Fantasytown
implies that it might be less preferable as solar plant location than the other locations we looked
at.

Example 2: Temperature

For the purpose of the second v-plot use case example, we took a closer look at the recorded
outdoor temperature at 5 different locations of the PV dataset. The temperature was recorded
from July 2013 to November 2014, covering a time span a bit longer than a year. Thus, the
dataset contains the temperature fluctuation over the year caused by the changing seasons.
With the help of the v-plot visualization we wanted to find out how strong the measured tem-
peratures differ among the locations. We made use of the density distribution layer, supporting
looking at the individual distributions as a local and comparing two distribution as a global task
(see Figure 9 on the left). At a first glance, the frequencies of the visualized histograms overall
approximate a slightly skewed normal distribution with their counts peaking approximately in the
range of 14°C to 16°C. Their similar shapes indicate that the recorded temperatures are dis-
tributed alike among locations. Looking a bit closer, the distribution of the temperature recorded
at Fantasytown shows a steeper climb and a higher peak than the others.

Figure 9: Data from the PV dataset containing the recorded temperature at five different locations. Left:
The data visualized as v-plot matrix using only a shape-based density distribution. Right:
Showing the same data as on the left side but represented by the direct difference encoding
layer being visible as shape. This helps to spot differences between the data channels easier.
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To investigate that further, we adapted the layers of our visualization, displaying the direct
difference encoding instead and zoom in on the x-axis (see Figure 9 on the right). This empha-
sized differences between the displayed data channels, making them stand out more. Looking
at the direct difference histogram, we detected that the recordings at Fantasytown also showed
the biggest difference to all the other locations. Examining the data closer, we saw that Fantasy-
town most often recorded temperatures between 12°C and 14°C with a percentage of 24,11%
of its samples. Further inspecting the direct difference, we saw that Fantasytown had only few
recorded temperatures below 8°C compared to the other locations. Based on these findings
we could further investigate if the recorded generated power in Fantasytown differed from other
locations, and if so, whether this could be linked to the found difference in recorded tempera-
tures. We could also investigate that there is a connection between the recorded temperatures
and the recorded insolation from the first presented use case for Fantasytown.

3 Evaluating data visualizations

Over time, data visualizations have become a reliable tool to support data analysis tasks. With
their increased establishment, research in this field has become more popular as well. Only a
relatively small amount of research focuses on the empirical evaluation of data visualizations,
as pointed out by Carpendale [15].

As Carpendale [15] elaborated further, the most common approach to test the effectiveness
of a visualization technique is a user study. One downside to this strategy is, that the effective-
ness is often only tested once and for a few specific tasks. Undertaken user studies often do not
cover the same extent of use cases and tasks that the visualization would be used for in real-life
scenarios. Further, conducting an effective user study can be time-robbing and expensive. Not
every data visualization creator may have access to enough suitable participants for the testing
set.
A faster, more generalized, and automated way to test the effectiveness of data visualizations
would be valuable. In the following related work section, evaluation techniques concerned with
an alternative approach to evaluate visualizations are presented. Subsequent to the introduc-
tion of already existing evaluation techniques, we propose a new evaluation approach. This
approach proposes computing different pixel-based ratios to determine the scalability perfor-
mance of a visualization technique in relation to the available screen-space in pixels.
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3.1 Related work

Related work regarding the evaluation and effectiveness of visualization techniques is pre-
sented in this section. This includes the approach of Eick et al. [19] to measure visual scalability
and the introduction of refinement strategies, that can be applied to improve a visualization de-
sign [19]. Further, the idea of using measurements based on the saliency of an image and its
application to evaluate visualization techniques, is discussed. In particular, the data visualiza-
tion saliency model developed by Matzen et al. [48] is illustrated. Another approach concerned
with the readability and effectiveness of visualizations is the data-ink ratio, as suggested by
Tufte [74]. The data-ink ratio along with other minimalist principles by Tufte are concerned with
the reduction of a visualization to only its necessary parts.

3.1.1 Measuring visual scalability

"Visual scalability is the capability of visualization tools effectively to display large data sets,
in terms of either the number or the dimension of individual data elements." [19]. Questions
concerning scalability and performance arise whenever new visualization techniques are de-
veloped or extensively tested. Only few approaches to measure visual scalability exist. Eick et
al. [19] presented an approach to structure the problem of visual scalability. Visual scalability
is a quantification that is dependent on the factors and responses of a visualization. Factors
describe the characteristics of a visualization and responses can be seen as benefits gained
from it, e.g., insight or discoveries. The problem with that approach is that responses cannot be
measured. Instead, Eick et al. [19] suggest replacing responses with measures of visual scala-
bility. These measures of scalability can be subdivided into database metrics and visualization
characteristics with their distinction as follows:

• Database metrics are concerned with the size of the underlying database, which is de-
pending on e.g., the number of rows and columns of an underlying data table, but can
also account for the amount of bytes needed to store the data.

• Visualization characteristics are concerned with the quantity of elements visualized
by a certain visualization technique. An example for that would be the number of bars
visualized in a histogram.

Possible factors influencing the scalability can be quantified and are grouped in the following
way:

• Human perception describes the fact that the capability of the human brain and eyes are
a limiting factor concerning visual scalability. Given the current standard of knowledge,
that around 6.5 million pixels are perceptible by the human eye, consequential the human
eyes are currently not the bottleneck for scalability.

• Monitor resolution impacts visual scalability in terms of physical monitor size and its
pixel resolution. All though monitors have increased in size and resolution, they are still
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incapable of matching the perceivable amount of pixels by the human eye. This is why
monitors are still limiting visual scalability.

• Visual metaphors are in the context of this work also called visualization techniques. This
item also includes mapping of data attributes onto color and other adjustable properties of
the visualization. The choice of visual metaphor affects the scalability strongly. Depending
on the overall circumstances some visualization techniques scale better than others.

• Interactivity describes techniques used to interact with the visualization. This includes
among others: panning and zooming, brushing and selection.

• Data structures and algorithms also have an noticeable effect on the visual scalability.
Algorithms in terms of computational tasks and rendering tasks must scale well in order
to support overall scalability. The importance of a very efficient algorithm increases with
the complexity of the used visual metaphor and the provided user interactions. Especially
for many interactions, the user expects the effect to take place instantly (e.g., panning).

• Computational infrastructure is concerned with the hardware that is used for computa-
tion, e.g., CPU, GPU, access times for storage devices, network speeds.

Based on these measures of scalability and factors, refinement strategies can be applied to
improve visual scalability. When determining the limitations of a visualization, refinement strate-
gies can be adopted to compensate for the limiting factors. Among others, refinements can be
made for the aforementioned visualization techniques. Refinement strategies for visualization
techniques include: optimizing drawing algorithms, adapting element sizes when little screen
space is available, or drawing only every nth label at an angle to save space and avoid overplot-
ting. The factor interactivity also offers many possibilities to improve overall visual scalability
through the following refinements: supplying zoom and panning controls, and selections like
filtering and focusing.
Combining multiple views increases scalability as well, as pointed out by Eick et al. [19]. Using
a central view that uses a visualization technique that gives a good overview in combination
with supporting views that act as filters for the selection of data subsets.
Another related work on that topic was done by Jakobsen and Hornbaek [35], who examined
how well maps scale in respect to varying screen-sizes and variable information space. They
also inspected how user interactions (like zooming, focus and context, overview and detail)
affect visual scalability.

3.1.2 Visual saliency models

Another approach to measure the effectiveness of data visualizations are saliency models.
"Visual salience (or visual saliency) is the distinct subjective preceptual quality which makes
some items in the world stand out from their neighbors and immediately grab our attention."
[33]. Saliency maps can be generated to simulate where the attention of a viewer is directed
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towards. More specific, they are topographical maps that represent visual saliency of a cor-
responding visual scene [56]. The resulting map is influenced by parallel processes in the

Figure 10: Showing a bar chart visualization, with its DVS map as overlay. Cropped version of the original
image taken from [48].

brain, described as bottom-up and top-down visual attention. Generally speaking, properties
that make a particular region stick out from its surroundings through certain sensory stimuli
are bottom-up factors. Color, scale, shape, motion and contrast are examples for bottom-up
factors. Experiences, tasks, expectations and goals an individual has are top-down factors that
influence how saliency is perceived. This means that regions with high saliency from a purely
bottom-up point of view might have overall low saliency when also taking top-down aspects into
consideration. To create a saliency map for an image, a saliency model can be applied. It pro-
duces an image, encoding a value representing the level of saliency per pixel. These models
generally work to estimate only bottom-up visual saliency, predicting where a viewer will look at
in the image. These generated maps can further be used to determine whether the bottom-up
visual attention suits an top-down motivated task. Most of the models are designed for natural
scenes and photographs and do not work well with abstract data visualizations. Some of the
reasons being the difference in their spatial scales and visual features like color, white space
and text, as pointed out by Matzen et al. [48]. Based on these observations they developed
a model concerned with evaluating the effectiveness of data visualizations through saliency,
called the Data Visualization Saliency (DVS) model. The DVS model is based on the Itti model
[34] that performed best applied to abstract data visualizations among existing models. Matzen
et al. [48] further refined the model to use another color space and to better determine the
saliency of text, which is a major problem of most saliency models when applied to data vi-
sualizations. To evaluate the performance of the DVS, it was tested along with other saliency
models and compared for a set of visualizations where fixation data of viewers was available.
The results of this test showed, that the DVS model performed significantly better than other
visual saliency models. Matzen et al. [48] propose the DVS as tool for visualization designers to
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simply and quickly evaluate how well their intended points of interest of the visualization overlap
with the saliency map produced by the DVS, and, which parts of the visualization draw the most
attention. A sample application of how to test visualizations by means of a salience metric was
also shown by Jänicke et al. [37].

3.1.3 Data to Ink ratio

Tufte [74] supports the approach of minimalist designs for information visualizations. According
to this strategy, elements of the visualization should either directly represent the underlying
data or be left out to not distract the viewer. A summed-up principle of this approach reads as
follows:

"Above all else show the data."
In respect to this principle, the data-ink ratio is formulated. The term ink is used to describe the
parts of a visualization whose colors differ from the background color. The data-ink describes
the parts of the visualization that cannot be erased without losing the actual representation of
the data. An example for non data-ink are graph axes and the tick marks of those axes. From
those two terms, the data-ink ratio can be formulated as follows:

data-ink ratio =
data-ink

total ink used in the graphic
(1)

This simple equation returns a percentage, describing the data-ink ratio as a statistic mea-
surement. According to Tufte [74], the share of data-ink should be maximized, but within reason
[74]. A higher result implies that more of the overall used ink in the visualization is devoted to
directly represent the underlying data. From this follows that the reciprocal value (1 - data-ink
ratio) is descriptive of what proportion of the visualization can be erased without losing data-
information. The minimalist approach further suggests to remove any redundant data-ink, as
it does not give any new insight on the data. An application of maximizing the data-ink ratio is
illustrated in Figure 11. It shows a bar graph, and the same graph split into its redundant and
its necessary data-ink. Following the minimalist principle, ideally the variation that should be
used out of the three, is the one on the right, which has the highest data-ink ratio. The work
of Tufte regarding information visualization is quite well-known among visualization designers.
Some studies were conducted to give an indication about the effectiveness of these principles.
For example, McCormick et al. [51] suggested that in some cases redundant data-ink like tick
marks along an axis can actually improve readability of a visualization. Another study was per-
formed by Gillan et al. [23]. It covered four experiments to test Tufte’s principles applied to
visualizations used for data analysis tasks. The outcome of the experiments showed that non-
data ink can have a positive effect on completing analysis tasks faster and with more accuracy.
Depending on the location, function and user task, non-data ink can also deteriorate readability
of a graph, supporting the approach to maximize the data-ink ratio.
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Figure 11: An applied demonstration of increasing the data-ink ratio of a bar chart. This graphic depicts
how a bar chart visualization(left) consists of redundant ink(middle) and data-ink that cannot
be omitted without losing information(right). Images taken from [74].

Inbar et al. [32] conducted a user study examining the preference towards minimalist visualiza-
tion designs. In the respective experiment, the test group consisted of eighty-seven students.
They rated a standard bar graph and three increasingly more minimalist versions of the bar
graph created by Tufte [74] under various conditions. The findings of the study suggested, that
users prefer less minimalist designs. This result might be influenced by the fact that most users
tend to prefer already known visualization designs over novel ones [28].

3.1.4 Discriminability tests

In the context of their work, Veras et al. [75] define the term discriminability as: "Given a col-
lection of datasets, the average perceptual distance between the corresponding visualizations".
Discriminability tests can be conducted to evaluate the perceived differences in images. One
measurement to test for image disparities is the Structural Similarity Index (SSIM) which is com-
monly used in the field of image quality analysis. A modified version of it being the Multi-Scale
Structural Similarity Index (MS-SSIM) developed by Wang et al. [77] which also integrates im-
age resolution and viewing conditions. MS-SSIM works on multiple images as input, generating
a similarity map based on luminance, contrast and structural similarity. Veras et al. [75] used
a modified version of the MS-SSIM to measure discriminability between abstract data visual-
izations depicting different datasets. They introduced an additional parameter to also detect
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differences in hue, which the color-blind MS-SSIM does not support. They further determined
that grid lines that are not aligned among visualizations would have a greater effect on the
discriminability than actually perceived by the user. They suggest leaving them out completely
when computing the MS-SSIM, as it leads to less distorted values. The same goes for text
and labels present in the visualization. Based on the outcome of their benchmark experiments,
they suggest that a discriminability test should be part of the evaluation of data visualizations
that can be applied very early on in its design stage. For established visualization designs,
MS-SSIM can give practical insight to their often only theoretically discussed discriminability.

3.2 V-plot matrix scalability evaluation

Blumenschein et al. [11] have tested the v-plot visualization on the basis of a user study with
promising results. The matrix arranged v-plots were also part of this study. However, the au-
thors did not examine the limits of the v-plot matrix in terms of dimensionality and configurations
in reference to given screen-space. A method is needed to evaluate the scalability of the v-plot
matrix that can approximate a guideline for creating and working with v-plot matrices.
In the recent subsections it was shown that there are many different approaches when it comes
to evaluating data visualizations. However, notions on scalability of the methods and standards
for evaluations are still open research topics. Therefore, a simple, pixel-based approach is
presented to test data visualizations for their scaling performance with reference to different
amounts of available screen-space. The evaluation is not concerned with the scaling of the
underlying information space, which is kept constant [35]. User interactions with the data visu-
alization are also not considered. For the purpose of this thesis, the suggested approach will
be tested by means of the v-plot matrix visualization.
The aim is to answer the following formulated questions:

• How well do v-plots scale with respect to the available screen space?

• How do bin count, matrix dimensionality and layer configurations affect the scaling of
v-plots?

• Under what circumstances do the v-plots lose their discriminability?

The proposed approach is developed with regards to the findings of the aforementioned related
work in the field of data visualization evaluation. The structure of our proposed evaluation
strategy consists of computing three different pixel-based ratios across exported v-plot matrix
images of different sizes and correlate their results to make a statement on their scalability.
Referring to previously discussed techniques, the ratios that will be observed for the evaluation
are:

• Data-ink ratio: Following the minimalist approach and guidelines for optimizing visualiza-
tion quality explained in Section 3.1.3, the data-ink ratio is computed.
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• ’Foreground-background (FG:BG)’ ratio: A percentage that indicates how much of the
image space is occupied by ink. This measure is inspired by a very simplistic take on
saliency models as it measures the ink sticking out from the background.

• Discriminability of v-plot sides as ratio: A measure representing the number of dif-
ferent pixels between v-plot sides when comparing the shape of their data-ink. As also
discussed in Section 3.1.4 grids will not be used in this calculation, as even a small offset
would lead to a higher discriminability than probably noticeable by a viewer.

The idea is that observing those ratios over varying screen-spaces and with different v-plot con-
figurations, should reveal trends and patterns when scaling v-plot matrices. Ideally, the ratios
should stay relatively consistent over different sizes. This would mean that smaller plot sizes
still preserve approximately as much information as they display on larger scales. However, we
expect to see bigger ratio changes when it comes to small screen-space or v-plot configurations
of higher complexity. The main reason for this hypothesis is the fact, that the drawn primitives
cannot be scaled down to an arbitrary size without losing accuracy. This same effect is also
expected to be apparent when using high bin counts on insufficient screen-space. Setting a bin
count higher than the number of pixels available might yield unpredictable results as bins can
no longer be mapped to pixels unambiguously.
In terms of the measures of scalability as defined by Eick et al. [19] and discussed in Sec-
tion 3.1.1, this approach solely focuses on visualization characteristics and ignores database
metrics. Further, its focus lies on the influence of the factors of monitor resolution and visual
metaphors. In the context of this method, we are not concerned with the actual monitor resolu-
tion but with the screen-space in pixel available to the visualization.

4 Implementation

The implementation work done for the purpose of this thesis consisted of two parts. The first
part was the implementation of the v-plot matrix visualization. This implementation was an ex-
tension to an existing visualization software. This required to get familiar with the code structure
of the present software. Afterwards, a concept for the implementation was made, following its
realization in the next step. The second part of the implementation consisted of a scripting so-
lution to realize our proposed visualization scalability evaluation approach. The prerequisites,
requirements and implementation of the evaluation script are outlined in the dedicated sections.
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4.1 V-plot matrix implementation

To answer the questions regarding the v-plot matrix scaling performance, the first step was to
implement a v-plot matrix visualization. As part of this thesis, the implementation was integrated
into the software Visplore by VRVis [63].

4.1.1 Visplore by VRVis

Visplore by VRVis [63] is an interactive software tool for the visualization and analysis of large
datasets and was specifically designed for the work with time-series data. The software sup-
ports various data visualizations as well as interaction techniques and configurable calculations
to support users analyzing their data.The software supplies various dashboards, as depicted in
Figure 12, that are specialized to help with certain use cases when working with different types
of data. Each dashboard consists of multiple views and various functionalities to assist the user
in analysing their data.

Figure 12: Multiple screenshots of the Visplore by VRVis software displaying different dashboards that
support the execution of various analysis tasks. Image taken from [63].

In the context of Visplore by VRVis, the term view is used to describe a part of the program that
contains the functionality to display a certain visualization technique that can be configured and
interacted with. These views are displayed in their respective window which is a sub-window of
Visplore by VRVis. In computing terms, a window describes a framed part of the display that is
used by a program to display information. Such views are usually used in combination, creating
a so-called dashboard.
The data is processed in the form of channels. A channel corresponds to one variable of the
dataset. When the dataset is visualized as a table, one channel is contained within a col-
umn. Channels can either contain a date and/or time, numerical values or categorical values.
While numerical channels can contain values from an infinite numerical value range, categorical
channels contain values from a countable number of values, which do not have to be numeric.
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Categorical channels often contain values from a fixed set of values, which are also referred
to as groups. Meaning that one group of a category corresponds to a specific value, that the
values of a categorical channel can take on.

Most of Visplore by VRVis is written in the C++ programming language. The choice to use
C++ was made based on the fact that C++ was developed to be performant, efficient and flex-
ible. Ideal properties for a software with the requirement to manipulate and represent large
datasets in real-time. Among others, modern C++ supports object-oriented programming as
well as low-level memory manipulation. Further, because C++ is based on the C programming
language, it supports the usage of libraries that are written in C.
In Visplore by VRVis, some parts that are not crucial in terms of performance are written in
Python [64].
The user interface is implemented using the GTK cross-platform widget toolkit (GIMP ToolKit)
[25]. Rendering is performed with OpenGL (Open Graphics Library) [57], a cross-platform and
cross-language application programming interface (API). OpenGL enables hardware accelera-
tion through usage of the GPU. Visplore by VRVis also supports the usage of Mesa 3D [52],
which allows graphical computations to be done on the CPU rather than the GPU.

As part of this thesis, v-plots were implemented to extend the visualization methods supported
by Visplore by VRVis. More specific, the currently existing histogram view of the software was
used as basis for the v-plot matrix implementation. The reason being, that the histogram view
already contains some elements that are also needed for v-plots. Like the histogram visual-
ization, and a density distribution function visualization. Therefore, the internal workings of the
histogram view are explained further in the following subsection.

Histogram view

As part of the software, data distributions can be visualized as histograms in a dedicated view.
This view is implemented as the so called histogram view. The histogram view already supplies
the functionality of binning the underlying data and visualizing it either as a bar graph or a filled
broken line chart. Layers can be used to draw multiple different visualizations of the data on
top of each other. In case of the histogram view, the histogram visualization itself is the bot-
tom layer. Functionality to show additional layers is provided, e.g., in the form of a distribution
function layer. This distribution function can either be a normal distribution or a logarithmic nor-
mal distribution visualized through a stippled polyline. The comparison of multiple histograms
representing different datasets is possible in juxtaposition, through showing multiple histograms
one below the other. It is also possible to show a superposed arrangement, enabling the com-
parison of different groups of a category in a dataset. This is achieved through separation by a
categorical channel through color encoding. The differently colored histograms are then drawn
as overlays and with transparency. The supported modes of the view are shown in Figure 13.
Existing interactions to assist in the comparison of the data include zooming and panning the
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Figure 13: Graphics are taken from screenshots from Visplore by VRVis. Left: Single histogram with
overlaid normal function visualized as stippled line. Information about the underlying data of
the hovered blue bin is listed in a popup that appears on hovering. Top right: Multiple his-
tograms in a superposition arrangement drawn with transparency as filled broken line graph.
Bottom right: Multiple histograms drawn one below the other in a juxtaposed arrangement
internally also called a trellised layout.

view. As all other visualizations in Visplore by VRVis, the histogram view supports cross-filtering
between views of a dashboard. This enables the histogram view to be updated whenever the
current selection of data is changed in another view and vice versa. The binning of the data
can also be adapted by changing how many bins the data should be split into. This directly
influences how detailed the underlying data is represented, and should be used considerately,
as discussed previously in Chapter 2.1.1. The minimum number of bins supported by the his-
togram view is 1 and the maximum number of bins is 256. The bin width cannot be adapted
by the user. It is calculated in relation to the total screen-space available, with respect to the
specified number of bins. Another adjustment that can be made is whether the frequency of
appearing values should be represented as total count or as percentage.
The source code of the histogram view consists of multiple C++ classes. The most important
classes that help explain its logical structure are listed below, briefly summarizing the function-
ality that was reused for the v-plot implementation:

• Main view class: It holds the instances of all other classes of the view needed for com-
putations, drawing and more. It also stores parameters shared among them. These
parameters include, but are not limited to, the mapping for the axes and the currently
used visualization mode for the histogram (bars or polyline) and the used density distri-
bution function. The mapping supplies the computations needed to map values from a
source value range to a target range and vice versa. In this case, the mapping is used
to project the frequency values on the y-axis of the histogram (source range) to the given
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screen-space (target range). The mapping is further used for projecting the values of the
x-axis, that represent the binning, to the given screen-space.

• Data storage: A storage class for the components which are drawn later on. Those
components include the vertex data for drawing the histogram and the vertex data for the
density distribution function.

• Data updater: Provides functionality to access the data storages and update their con-
tent.

• Renderer: Calls the draw function of the data storages’ components in the right order
after evaluating their visibility. Utilizes the OpenGL API for its drawing routines.

• Backend: Responsible for coordinating the data updater and the data storages. This
includes keeping the data storages up-to-date whenever the underlying data changes, for
example, through user selections. It further issues the renderer to execute whenever a
redraw is needed. It also stores and updates the binning of the histogram. The backend
holds an instance of the grid class, which is responsible for drawing the axes along with
their legends, ticks, and grid lines.

• Frontend: Contains the controls of the view and displays them. This includes buttons,
option dialogues and the coloring legend. It uses the GTK library for drawing them. It
notifies the backend whenever the user performed an action that requires re-computation
or redraw.

To display a histogram within the histogram view, the following steps are traversed. When a data
channel is selected, the backend notifies the data updater, which is responsible for updating
the stored data within the data storages. The data storages are updated to contain the vertex
data for drawing the histograms and the distribution function of the currently selected channel.
The axis mappings, which are stored in the main view class, are re-calculated, so that their
source range fits the value range, that the selected channel spans. The target range is set to
the resolution of the view window. The binning and the grid, which are stored in the backend
are updated. When the necessary components have been updated successfully, the backend
issues the renderer to draw the vertex data of the data storages. The user can then interact
with the histogram through controls that are supplied by the frontend. For example, zooming or
panning the view leads to the re-calculation of the binning and to updating the zoom factor of
the mappings. Following these steps, the renderer clears the view and draws the vertex data
again.

Coloring legend

Coloring legends play another important role when visualizing data. The purpose of a color
legend is to map the colors that are used in a visualization to a certain data channel or cate-
gory. Many views of Visplore by VRVis use a coloring legend, including the histogram view. In
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Visplore by VRVis, the color legend is usually displayed at the top or bottom of a view. Besides
the color mapping, the coloring legend also displays whether the underlying dataset is currently
shown as a whole, or if a categorization is enabled. A categorical channel can be used for
categorization. If a categorization is enabled, the legend displays the name as label and a col-
ored square for each category group. The coloring legend allows the user to choose whether to
show the whole dataset, or split the data into subsets by the requested categorization. In case
categorization is chosen, for each group of the category, multiple histograms are then drawn as
overlays in one single plot. Each histogram is displayed with the according color for the category
group it represents. Which color is assigned to which category group is calculated internally
when categorization is performed. This color stays persistent over all views. The user might
change category colors according to personal preference or to better fit a certain use case. The
coloring legend also supports choosing which category groups are visible. The data of all other
classes can then either be not shown at all, or can be combined into one category class named
other which is then treated like its own category group. Figure 14 shows the coloring legend as
it is currently implemented in Visplore by VRVis along with its options dialogue. The coloring
legend can also be seen in Figure 13 in the top bar on the right of the screenshots.

Figure 14: Left: The coloring legend as displayed in the histogram view, as bar above the histogram
plot. With the button labelled Date [Month] on the left, the categorization can be chosen. The
middle of the coloring legend shows the colors per category group in small squares along with
the category group’s name, in this case numbers representing months. On the far right of the
legend a button labelled Configure legend is available to open the options dialogue. Right:
The options dialogue of the coloring legend. It allows for selecting which category groups
should be shown and whether deselected classes should be combined to be represented as
an accumulated class labelled other.
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4.1.2 Implementation steps

One major goal of this thesis was the integration of a v-plot implementation into the existing
histogram view. Therefore, the histogram view was expanded to support drawing the layers,
of which a v-plot consists, as overlays on top of the displayed histogram. The binning and
drawing routines of the histogram remained as-is and were re-used. The binning is set at the
time of creation of the view and can be adapted by the user at run-time. Other than that,
the steps executed to expand the histogram view to support drawing v-plot matrices are listed
subsequently:

1. View mode: In order to also keep the existing histogram view working as is, a new view
mode was introduced internally. It tells the software whether to visualize the data as
histograms or v-plots.

2. Axis mapping and labelling: To fit the v-plot representation, the histograms of the view
were expanded to support being drawn mirrored and with their x- and y-axis switched. In
addition, the already existing labels and the grid, which are the final layer of the v-plots,
were adapted. This step involved centering the x-axis between plots and making the
y-axis symmetric.

3. Layer expansion: The histogram view already offered overlaying a distribution function.
This layer was expanded to support other density functions: the KDE function and a
shape-based density function.

4. New layers: The layers for direct difference encoding and statistic measures were cre-
ated.

5. Rendering: The rendering functions were expanded by functions to support drawing the
additional layers, the existing histograms, and the density distribution in a reasonable
order.

6. Layout: The layout of the histogram view was changed to enable viewing multiple v-plots
in a matrix visualization.

7. Controls: The v-plot layers were made configurable through an options dialogue. Lay-
ers can be configured individually. Further, various v-plot configurations are provided as
presets, to assist the user in finding a fitting configuration.

Desired behaviour

With our implementation, we want to achieve that the view behaves as described here. When
the view is newly created and shown, only the first channel of the loaded dataset is selected
and drawn as a histogram. When the user performs a selection of two or more channels of the
dataset or selects a categorical channel, the view mode is switched to display v-plots. In case
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three or more channels are selected, or the chosen categorical channel contains more than
two category groups, a v-plot matrix is created. To distinguish channels or category groups in
the data, each is assigned a color automatically. This color may also be changed by the user
at run-time. The newly implemented v-plot visualization also uses this color to draw its visible
layers. This color encoding allows for not needing to draw the grid and labels for the matrix view
on small screen-space. Through the consistently visible color legend of the view, the v-plots
stay referencable to their underlying data. An options dialogue offers available presets for the
v-plot layers and the options to adjust each layer separately.

4.1.3 Implemented changes

Based on the implementation steps described in Section 4.1.2, the following changes were
implemented to achieve a working v-plot integration into Visplore by VRVIS in compliance with
the desired behavior described in Subsection 4.1.2.

View mode

The histogram view had to remain usable as-is, therefore, view modes were introduced. The
default view mode was the VIEW_MODE_HISTOGRAM. When set, the view had the function-
ality to draw histograms like before the v-plot extension. On selection of multiple data records,
histograms were either drawn trellised or as colored overlays within a single plot, as described
in Section 4.1.1. The other view mode which introduced new functionality upon activation was
the VIEW_MODE_VPLOT. On selection of multiple data records or a category, a single v-plot or
a v-plot matrix was drawn. The switch was implemented as evaluation of a simple if-statement.
The view mode parameter was set externally, and was evaluated on view creation and, there-
fore, could not be changed by the user at run-time.

Axis mapping and labelling

The main view class of the histogram view stored and maintained two data mapping instances,
one for the x-axis and one for the y-axis. In this case, x and y corresponded to the coordinate
system of the screen, where x referred to the horizontal and y to the vertical axis. The data
mapping contained multiple parameters, these included a zoom factor, the mapping’s source
range, and its target range. Among other functionalities, the data mapping was capable of
mapping a given number of values of a passed array from its source range to its target range.
This mapping function was used for mapping the histogram vertex data to its screen-space
position relative to the viewport that was set in OpenGL.
The labelling of the axes was performed by the grid. Based on the mappings of the x- and
y-axis, it calculated how many axis ticks could be drawn on the available screen-space. The
labelling was adapted whenever the mapping changed.
In the view mode VIEW_MODE_HISTOGRAM, the range of values that the distribution could
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assume was mapped onto the x-axis. The number of values per bin was mapped onto the y-
axis. For the VIEW_MODE_VPLOT this axis mapping was switched. The count of values was
mapped to the x-axis and the possible value range was mapped to the y-axis.
The grid was expanded to support drawing the axis labels of the horizontal axis symmetric
around zero. The vertical axis was extended to be drawn in the center of the available space.

Layer expansion

Software logic to draw the histogram layer already existed. The histogram could be drawn either
as bar chart or as filled broken line graph. In addition, support to draw an overlaying distribution
function as a stippled line with a fixed color was already implemented. A normal distribution as
well as a logarithmic normal distribution were already supported and reused as an option in the
v-plot visualization.
The distribution function overlay was expanded to also support the computation and render-
ing of a shape-base density distribution as well as a kernel-density-estimation (KDE) with ad-
justable bandwidth and a variable number of ticks to use. Both the shape-based density func-
tion and the KDE were implemented to draw a catmull-rom spline. The generated curve was
displayed as a filled area with transparency and without an outline. The existing normal and
logarithmic normal density distribution functions were adapted to also support being visualized
in that manner when v-plots are drawn.

New layers

Newly introduced layers were the statistical measures layer with the possibly shown connec-
tions realized as a separate class and the direct difference encoding. The statistic measures
were computed based on the binning of the underlying data for each v-plot side. The measures
were always represented as colored lines according to the existing color legend. The statistic
measures connections layer and the direct difference encoding layer were different to the above
mentioned layers. Due to their nature, they used both sides of a v-plot as basis for their com-
putations.
The statistic measures connections used the calculated aggregates from the statistic measures
layer. These were then mapped to the screen-space and connections were drawn either as
grey lines and/or a transparent grey area.
The direct difference encoding was computed based on the binned values from both v-plot
sides. The total difference per bin was calculated. Based on the outcome, drawing primitives
were computed. This layer could then be drawn as histogram and/or shape with an outline and
transparent filling. The direct difference encoding was either drawn in its encoded color or in a
dark grey. When both, difference shape and difference histogram were drawn, the shape was
displayed using its color encoding and the histogram uses dark grey.
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Rendering

For rendering the v-plots, a new renderer class was created. This decision was made after a
first attempt to restructure the existing renderer. The functionalities needed for the rendering
of the v-plots were very different to the existing rendering functionalities of the histogram view.
Some of the major differences that led to this decision being made are listed below. First of all,
the drawing of a matrix was not handled in the histogram renderer yet. This included not only
drawing multiple histograms, but also to adjust the used line width accordingly, as it had to get
smaller with an increasing count of plots in the matrix and a decreasing amount of available
screen-space. The existing renderer did support the rendering of a layer containing a data
distribution. This was reused and the optional rendering of the other additional layers of the v-
plot were added. The new renderer class was capable of handling the different axis mappings
that were needed to draw the plot sides. This included one mapping to draw the left v-plot side
and one mapping for the right side. As it will be elaborated in the following Subsection 4.1.3,
the new renderer was also capable of automatically choosing colors for the v-plot layers and
made sure that each v-plot side stayed relatable. Since the usage of multiple colors was not yet
supported by the histogram renderer, this functionality had to be implemented in the new v-plot
renderer.

Layout

The existing layout supported displaying multiple histograms only in a way that one could be
displayed below the other, or all in one plot as overlay. To allow for the display of multiple v-plots
in a matrix arrangement, a new class was introduced, responsible for computing the layout of
the v-plot view. This class stored instances of the newly created renderer and the grid used
for the v-plots. Apart from maintaining the grid, the class was also responsible for updating the
newly created layers.
The layout was created with respect to the available screen-space and the number of selected
data channels or category groups.

Controls

The frontend was extended to create and display an options dialogue containing most settings
relevant for the v-plots, as can be seen in Figure 15. Apart from the settings per v-plot layer, the
number of histogram bins could be adjusted here. An exception were the settings for the labels
layer which were related to the grid display, so that their controls remained in the histogram
view window. The options dialogue offered some preset configurations to cover common use
cases quickly. To be very flexible when using v-plots, advanced users could set the options
for each v-plot layer separately. This included hiding or showing a layer. When a layer was
shown, different visualization styles could be chosen. Configuration presets could also be used
as starting points. Based on them, layers could be further adjusted. The visualization options
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Figure 15: The implemented options dialogue, containing the configurable settings of the v-plot imple-
mentation.

per layer consisted of:

1. v-plot presets: Lets the user choose one of eight presets that contain different combi-
nations of v-plot layer configurations to apply to the v-plots. Separately changing layers
afterwards is still possible. Per default, the v-plots are set to draw only the first layer
containing the mirrored histogram and the labels if sufficient screen-space is available.

2. Mirrored chart type: Can either be drawn as bar graph or not be visible at all.

3. Density distribution: Supports showing the normal distribution, logarithmic normal dis-
tribution, a shape-based distribution or a kernel density estimation. It can also be hidden.

4. Direct difference encoding: Can be shown as either bar graph or density shape. Also
supports showing both at once, or none at all.

5. Statistic measures: Currently supports showing the following combinations of indicators
at once: mean and standard deviation, mean and standard error, mean and quartiles or
median and quartiles. Can be either shown or hidden. If statistic measures are shown,
it is possible to visualize a connection between the two sides of the plot, either through
lines and/or a transparent filled area.

6. Labels: Are an exception, because their configuration cannot be set in the options dia-
logue, but must be adjusted in the view window directly. Labels containing the name of
the currently selected data columns are automatically generated and cannot be adapted.
What can be changed is, whether the data is shown as percent or count, which directly
influences the labels of the grid ticks. The displayed grid is affected by the mapping and
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adapts automatically when zooming or panning to find a meaningful representation. Fur-
ther, grid ticks and grid lines are hidden automatically when the available screen-space
per v-plot undercuts a certain threshold.

Coloring

For good readability, the coloring of the v-plots in this implementation was oriented at the default
settings of the v-plot designer by Blumenschein et al. [11]. It can be seen in Figure 16 on the
right. This design proved to perform well in terms of usability in their qualitative expert user
study. The default coloring in the v-plot designer is composed as follows: the histograms of
both sides are drawn in a light grey and for the direct difference encodings a darker grey is
used. The overlaid density plots are drawn in a color, that is specifically assigned to one side.
In this case, the left side is assigned blue and the right side data is visualized in red. The
handles indicating the statistic measures are also drawn in the according color of the side they
belong to, either blue or red in this default case.

Figure 16: The coloring used for the components of our v-plot implementation was oriented at the color
scheme the v-plot designer uses. Left: Comparing two columns of the PV dataset [60]
with our implemented v-plot visualization [60]. Right: The default v-plot configuration when
opening the online v-plot designer, which comes with a test dataset loaded [8].

The version implemented in the course of this thesis used almost the same presets, with the
difference being, that if no distribution shape was shown, the used colors per side referred to
the color of the underlying category group or data channel assigned by the coloring legend. An
example of it is shown in Figure 16 (left). The v-plot designer also offered the possibility to alter
the color of every element used in the v-plot separately. The implemented version in Visplore
by VRVis supported only altering the coloring through the color legend globally.
Another aspect that needed to be considered was how many layers, and which layers, were

shown, to make efficient use of the coloring. The default colors that were assigned to each
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Figure 17: Left: Various color configurations that the implemented v-plot view in Visplore by VRVis used.
Top left: Histogram layer visible. Top right: Histogram layer and direct difference encoding as
histogram visible. Bottom left: Direct difference encoding as histogram and statistic measures
with a connection as area visible. Bottom right: Direct difference encoding as histogram and
distribution as shape visible. As can be seen, each configuration uses the category’s color for
either of its elements. The first draft of color assignments used the v-plot designer’s [8] default
configuration as reference [8]. Right: This color configuration was discarded. The reason for
that being, that it could not be ensured that there is always a colored element visible on each
v-plot side. As seen on the bottom, only one side displays color anymore, which is not a
problem for single v-plots but gets problematic when showing a matrix arrangement.
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v-plot layer (see Figure 6) were: mirrored histogram layer: category color, direct difference
encoding: dark grey, distribution shape: category color, statistic measures: category color and
light grey for connection. It had to be taken into account how much screen space was available
for each visible v-plot when multiple plots were visualized as a v-plot matrix. Due to the fact that
the individual labelling per v-plot was left out when the available screen space per plot undercut
a certain threshold, it had to be assured that v-plots could be unambiguously associated with
their underlying data (category or data channel) at any time. This was achieved by making
sure that there was always a colored element visible in each plot. For example: for a v-plot
matrix only having the direct difference encoding layer containing a histogram set to visible, the
default coloring for the histogram layer changed from a dark grey to using the corresponding
color from the coloring legend. This way, each v-plot side still clearly referenced the underlying
data with the assistance of the coloring legend. Some coloring examples and the elaboration
of a problematic coloring case are contained in Figure 17. It shows a case in which no color
was visible on one side, therefore, it was not clearly referenceable when used in a data matrix
anymore.
A screenshot of our final v-plot implementation in Visplore by VRVis can be seen in Figure 18.
Another screenshot, displaying a v-plot matrix can be found in Appendix A.2.

Figure 18: A screenshot from the v-plot visualization that was implemented in Visplore by VRVis. Here, it
can be seen being used in a dashboard, that was arranged for the visualization and analysis
of the trends and distributions of data.
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4.2 Evaluation script implementation

With a working implementation of the v-plot matrix, the next step was to create the script for
our approach on evaluating the scalability of this data visualization technique. For compatibil-
ity reasons and the possibility for rapid prototyping, we decided for a scripting solution which
was written in Python 3 [64], using Jupyter Notebook [38] as computing platform. The free
scikit-image [76] library for image processing in Python was used. Among many provided algo-
rithms it offered useful functionality. This included: loading and saving images, as well as color
and encoding conversions. The script also made use of the open-source NumPy project [26]
which offered methods for numerical computations in Python. NumPy also offered easy-to-use
functionality to modify images, which were internally represented as multi-dimensional arrays.
This allowed for the quick transformation of images by means of mirroring or cropping them.
Vector computations were also supported by NumPy, which came in very handy when using
colors in a calculation. Last but not least, the script made use of the Matplotlib [31] to visualize
intermediate outputs in the shape of labelled and arranged images.

4.2.1 Requirements

To be appropriate for our proposed evaluation approach and evaluation setting, the script had to
meet certain requirements. These requirements specify the input that the script has to operates
on and the challenges for the actual computation. The output created by the script is also
specified in this Section.

Input

Image files served as input for this evaluation script. The file format of choice for this implemen-
tation was the Portable Network Graphic (PNG) file format. One reason for making this decision
was the fact that Visplore by VRVIS already supported the export of a view as a PNG file. The
image could either contain a single v-plot (matrix dimension 1) or a v-plot matrix.

Computation

The computation of the three proposed evaluation ratios described in Section 3.2 had to be
applicable for the given input images. The script had to be able to detect the pixels as either
data-ink, non data-ink or background correctly, with a minimal error rate. These assignments
had to be made in order to calculate the three ratios: data-ink ratio, foreground-background ratio
and the discriminability of v-plot sides as ratio. Not mandatory, but desirable, were some sort
of intermediate results throughout the computation. They served for debugging purposes and
allowed for supervision of the computations. Also, for the purpose of this thesis, they helped in
visualizing the internal workings of the evaluation script.
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4.2.2 Concepts for the computation logic

After loading the images of the v-plot matrices, it had to be detected whether a pixel contained
data-ink, non data-ink or background. In the context of this thesis, we will refer to these three
possibilities (data-ink, non data-ink or background) as groups. The differentiation into these
three groups was needed to calculate the evaluation ratios, as explained in Section 3.2. The
script determined a pixel’s affinity to one of these groups solely by its color. To accomplish that,
the colors of background, text and grid had to be known. With this information, pixels with any
different color could be marked as data-ink. The colors used for text, grid lines, and background
stayed consistent across the exported v-plots and could, therefore, be set to the default values.
Due to the fact that the implemented v-plot visualization used transparency and smoothed lines,
pixels could consist of ambiguous mixed colors, which were not classifiable through referencing
the default values. This issue occurred between smooth drawn text and the background, the grid
that was drawn transparently on top of the data, and when a statistic measures connection area
was drawn on top of the vertical axis labels, which could, furthermore, intersect with smoothed
text. These mentioned cases are visualized in Figure 19.

Figure 19: Emphasizing challenging areas when categorizing pixels by color. They emerged through
the usage of transparency and smoothing. 1) Grid lines are drawn with transparency above
the data. 2) Statistic measures connection area and lines are partially drawn on top of the
axis labels. 3) Axis labels and text in general are automatically drawn using some sort of
smoothing.

To handle these circumstances, we introduced priorities to the three groups. A priority defined
which affinity a pixel should be assigned to when a color was detected that did not clearly refer
to one group and, therefore, indicated that this pixel contained the colors of multiple groups.
When a pixel with ambiguous ink was detected, it was checked, to what groups the mixed color
of the pixel referred to. These groups were then checked for their priority and the pixel was
assigned the affinity to the group with the highest priority. An example: data-ink and non-data
ink were detected in a pixel. The group representing data-ink had the priority 1, while the non
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data-ink group had the priority 2. Therefore, the pixel was assigned to the data-ink group. The
priority behaved inversely to its numeric value, which ranged from 1 to 3. Meaning that the
group with a priority of 1 had the highest precedence and the group of priority 3, the lowest. In
the context of this script, we used the following naming conventions for the groups and assigned
them the following priorities:

• Data-ink group (DI): Contained the data-ink. Had the highest priority with priority 1.
This meant that whenever data-ink was detected predominantly in a pixel, its other shares
were ignored and the pixel was marked DI.

• Non data-ink group (NDI): Contained non data-ink, which either represented labels or
the grid. Had the second highest priority with priority 2.

• Background group (BG): Contained all pixels that did not have any ink, meaning they
were drawn using the background color. Had the lowest priority with priority 3, meaning
that it contained everything that could neither be assigned to DI nor NDI.

To compute the introduced ratios, the pixels of the visualization image had to be unambigu-
ously assigned to either of the groups. With the introduced prioritized groups, we established a
guideline of how to assign the pixels of an input image to these groups.

Each pixel needed to be checked for its affinity to every available group and was then as-
signed to the found group with the highest priority. This seemed unnecessary expensive, as we
already knew that there were certain areas in the image that could only contain certain types of
ink, or only background. To avoid unnecessary computations, the image was split into regions.
A region was defined through the x and y coordinate of its starting pixel in screen-space and its
width and height in pixels. Most importantly, each region stored an array, containing a reference
of all the groups that a pixel in this region might belong to. The regions themselves could not
be detected automatically but had to be declared manually for each v-plot input image. This
definition of regions enabled a simple opportunity to speed up the computation. For example:
A region that was marked to contain only non data-ink (NDI) did not have to be checked for
data-ink. Further, the definition of regions was necessary to handle certain areas of the input
image. The reason was, that every pixel that contained a color other than one of the known
colors for the grid, labels or background, was assigned to the data-ink group (DI), as explained
at the beginning of this section. This led to falsely assigning pixels that belonged to e.g., the
smoothed edges of text (as depicted in Figure 19, 3), to the data-ink group (DI) instead of the
non data-ink group (NDI). This could be prevented, by explicitly marking a region to only contain
NDI and BG, as we knew that no data-ink was present in this region. Therefore, a pixel of this
region that contained a mixed color, would not automatically be assigned to the data-ink group
anymore. Instead it was tested for its affinity to either the non data-ink group or the background.
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4.2.3 Implementation

The actual implementation of the script consisted of two major parts. The objective of part one
was to generate an evaluation result for a given image that contained only a single v-plot. Sub-
sequently, the implementation for square v-plot matrices of arbitrary size was realized reusing
the script for single plots. The workings of the script could be logically arranged into the three
stages: image processing, pixel affinity detection to one of the three groups, and the actual
ratio computations. Before elaborating these stages further, the data structure used to realize
the script’s components is presented. The complete script can be found in Appendix A.3.

Data structure

The concepts for the computation logic introduced in Section 4.2.2 as well as the computation
stages were implemented as part of the evaluation script as either data structure or function.
Some of the groups defined in Section 4.2.2 were represented through global strings. The
main purpose of these groups encoded as strings was to decide which approach should be
taken when detecting the pixels’ affinity of a region to one of the three groups. The groups that
were represented in the script were the data-ink group (DI) and the non data-ink group (NDI).
For further enhancing computation times, a sub-group was derived from the non data-ink group,
that described pixels that could only contain labels but not the grid. This group was titled Labels
ink (LI). This group was handled with the same priority 2 as the NDI group. This was possible
because we could foreclose that a region would contain labels and grid pixels. The background
was not represented as string explicitly, as it could be contained by every region.
The Region class stored the information of an image region as discussed in Section 4.2.2. It
was defined through its origin point’s x and y coordinate in screen-space relative to the image
it belonged to. It further stored the region’s width and height in pixels. A Region class instance
further stored an array that contained the possible groups (DI, NDI, LI) other than the BG, that
a pixel in this area could belong to. The BG did not need to be stored in this array explicitly, as
every region could contain background pixels.
The EncodedImageRegion class was specifically designed to store the regions of our v-plot
implementation. It explicitly stored the six regions that a v-plot could be divided into for the
purpose of this evaluation script. These six regions entailed: the left side of the v-plot, the
right side of the v-plot, the bottom legend and the left legend. Further optional regions, which
were not shown on all v-plot configurations, were the padding on the right of the v-plot and the
middle legend. The image regions are illustrated in Figure 20 on the left. This class also held
the functionality to determine the width and height of a v-plot.

The definitions for the groups as strings, the Regions and the EncodedImageRegions were
conveniently declared in the global scope of the file. This was handy when accessing it from
either the computation class for the evaluation of a single plot or a matrix.
The computation logic of the script was encapsulated in the VisualizationEvaluation class. For
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Figure 20: Defined regions of a v-plot image. V-plot image is taken from the input data set. Left: The
image can be split into the following six regions: 1) left legend, 2) left plot side, 3) middle
legend, 4) right plot side, 5) right padding, 6) bottom legend. Right: Image of a single v-plot
with the encoded image regions as colored overlay generated by the script. The coloring
represents which groups were assigned to the regions. Green represents a region marked
as LI. Pink being a mixture of DI(red) and NDI(blue) and the yellow region marks a region
assigned DI(red) and LI(green).

its instantiation, an image, as well as its according encoded image regions had to be passed.
The specification of colors for the grid, background and the data colors were mandatory. If non
were given, the default colors for each of these components was used. Note that the explicitly
given data colors were only concerned with the color of the data covering the middle legend
through a statistic measures connection. All other colors used for drawing data did not have to
be specified manually. They were deduced by the script through an elimination process, which
is explained in more detail later in this chapter. The VisualizationEvaluation kept track of the
counted pixels per group and stored a visual representation per group in the form of an image.
It further stored parameters and contained functions that were needed for the computation of
the evaluation ratios. These functions containing the computation logic are the topic of the fol-
lowing subsections. Last but not least, the VisualizationEvaluation supplied various functions
to display and save intermediate results.
The MatrixEvaluation class reused the computation logic introduced with the VisualizationEval-
uation and supplied further functionality to reuse it for v-plot matrices. This included extracting
single v-plots from the matrix, based on the manually specified dimensionality of the matrix.
Further, the foreground-background ratio calculations were changed slightly, as it was not cal-
culated per v-plot of the matrix, but for the matrix as a whole. The other ratios were computed
per v-plot, calculating their arithmetic mean to gain one single end-result per matrix.
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Preparations

Before entering the actual computation stage, an image had to be loaded as input. This was
accomplished through functionality of the scikit-image library. Its image read function loaded
the specified image as a three-dimensional NumPy array, where the first dimension represented
the y-coordinate, the second dimension was the image’s x-coordinate, and the pixel color was
encoded in the third dimension as an RGB vector. The image regions had to be specified man-
ually. This had to be done for each image size and matrix dimensionality separately. Once
specified, the determined regions could then be reused with v-plot images of the same resolu-
tion but with different layer complexities and bin counts. It also had to be determined whether
the colors representing the grid were among the VisualizationEvaluations’s default grid colors. If
any other colors appeared due to the usage of transparency when drawing the grid, these colors
had to be explicitly passed as an array of colors. The data and background colors both stayed
consistent over all of our input images. Therefore, their default colors were used throughout.

Image processing

Based on the given input, which consisted of an image depicting the visualization to be eval-
uated, the encoded image regions, and the specified colors, the VisualizationEvaluation class
could be instantiated. The given colors, input image and regions were stored within the in-
stance. The pixel counts per group were initialized with zeroes. The passed image was then
processed for further computation. First, the width and height of the image in pixels were stored
as parameters. Further, three empty images of the size of the input image were created. These
images corresponded to the three groups: DI, NDI and BG. Before any calculations were done,
the images contained only black pixels. To make sure that the manually passed image regions
corresponded correctly to the v-plot, a map was created that marked the given regions of the
image with the color belonging to its specified group. Encoded image regions and their denoted
colors were: DI was red, LI was green, NDI was blue and BG was black. To create this map,
the initially black image, in the size of the input image, was iterated over the specified regions
and each pixel’s color was added the color(s) of their corresponding region. Due to the fact that
a region could belong to multiple groups, mixtures of the above mentioned colors could appear.
Those colors were created through additive mixing, which allowed for tracing back to their re-
lated groups easily, as the most complex case was a region where all groups were possible,
which resulted in white pixels. The resulting image was then blended with the original image
and optionally output as file and as image preview within the programming environment (see
Figure 20 on the right). In case the regions were declared wrongly, for example because re-
gions overlapped or some part of the image was not covered by any region, the script stopped
executing. In case this stage was passed successfully, the script continued on to the next stage.
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Pixel affinity detection

The goal of this stage was to assign all pixels of the input image to one of the three groups as
specified in Section 4.2.2. This was accomplished by comparing pixel colors with the known
colors of different components (text, grid, data or background). As mentioned in Section 4.2.2, a
pixel did not always match the specified colors exactly. Therefore, functionality was introduced
to determine which group a pixel was more likely to belong to, based on its ambiguous color.
One region, where mixed colors appeared, were the adjacent pixels to text. These pixels’
colors were a mixture of the text color and the background color. A function was introduced,
that determined whether the pixel belonged to the text based on its color’s euclidean distance to
the text color. A tweak-able parameter had to be given to the function, declaring the maximum
distance a pixel might have to the text color to still be counted as text pixel. The distance value
was given as percentage of the maximum distance that two colors in the RGB color space
could have. This distance parameter was tweaked so that the pixels that were detected as
label, closely resembled how the text would be perceived by the viewer. With the distance
parameter set to a value of 0.8, satisfying results were achieved. As the size of the letters
stayed consistent over different v-plot sizes this configuration worked for all v-plots of the input
images. The allocation of text pixels to either NDI or BG and the different results when tweaking
the distance parameter is visualized in Figure 21.

Another function that was implemented and worked likewise, checked for the similarity to
the data color. As mentioned before, data color was usually recognized through a process of
elimination, meaning that every pixel that did neither belong to NDI nor to BG, had to belong
to the DI group. The middle legend region was the exception, as can be seen in Figure 19.
This was the only region of a v-plot where DI and LI collided. Still, the priorities of the groups
defined, that a pixel which represents data among others must be assigned to DI. In this case,
pixels of the statistic measures connection clearly contained data but were drawn in the text
color, as they also showed the axis ticks. Therefore, only checking for color similarity to the
text was not sufficient in this case, as it would have wrongly marked the pixel as NDI. Instead,
this case was handled as follows: First it was checked whether the DI marked region was also
marked LI. Through a process of elimination, this could only mean that this was the middle
legend region. If so, it was checked whether the current pixel was text. If the current pixel
was text, its surrounding pixels had to be checked. The pixels of a 5x3 region, with the center
being the current pixel, were checked for pixels matching a data color. If any match was found,
the current pixel was assumed to be covered up by data and therefore, assigned to the DI.
The region size covered by the check was deduced through experimentation, where 2 pixels in
both directions on the x-axis and also 1 pixel in each direction on the y-axis (resulting in a 5x3
rectangle) yielded the best results, as can be seen in Figure 22. The number of adjacent pixels
that needed to be found containing data color was also varied, with the outcome that finding
just one bordering data pixel is enough to mark the current pixel DI.

Having explained the functionality to determine a pixel’s affinity to one of the groups even for
ambiguous colors, the iteration logic to detect pixel affinities can be explained next. The detec-
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Figure 21: In the upper row on the right are several images containing only black and white pixels.
White pixels encode pixels recognized as text. Below them are extracts of the original image,
showing the remaining pixels that are counted to BG. 1) The original input image, that contains
text in the form of labels. To demonstrate how text is detected when changing the distance
parameter, the bottom legend of the v-plot is looked at. 2) The text as seen by the script
when only checking for pixels that match the given text color exactly (distance parameter =
0.0). This leads to broken strokes in the letters. 3) Shows what happens when everything
that is not background color is counted as text (distance parameter = 1.0). This leads to very
fat letters that do not match the viewers perception. 4) A distance parameter of 0.8 yielded
satisfying results, sorting darker pixels to the NDI and the very light pixels surrounding the
text to the BG.
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Figure 22: The classification of pixels in a region where labels (LI) and data (DI) occupied the same
pixel. Left: Cut-out of a v-plot showing a region where LI and DI occur. Right: Showing
the results of varying how many adjacent pixels are checked for containing data colors in
a matrix. The number of checked pixels in width increase on the y-axis of the matrix and
respectively the number of checked pixels in height is displayed on the x-axis. The width and
height are defined in respect to the currently checked pixel, which lies in the center of the
resulting rectangle. The chosen shape for the rectangle that is used in the evaluation is 5x3,
which lead to the least errors among all tested cases.
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tion of pixel affinities was done per region, where the order in that the regions were traversed
was arbitrary. The encoded image regions were iterated in an outer loop. Within the inner
loop the pixels of the region were traversed going from left to right and from top to bottom. For
each pixel, a varying number of different checks were made to identify its affinity. The following
checks were performed per pixel, in the following order:

1. The pixel was checked against the background color. If they matched, no further checks
had to be evaluated and the pixel could be marked as BG. This handling could be ap-
plied because the known background color only appeared where background was actually
present.

2. If the pixel could not be assigned to BG, it was checked whether the current region was
marked DI and therefore, could contain data-ink. If so, it was proceeded as follows:

• It was checked whether the region could contain labels (LI). If so, the region under
observation could only be the middle legend, which could contain parts of DI, LI and
BG. To find out to which of the three groups the pixel belonged to, it was checked
whether its color was most similar to the text color and not obscured by data, or if
its color was closer to the data color. If the pixel’s color was to neither text nor data
similar enough, the pixel was assigned to BG. These functions used to determine
color similarity were previously explained in more detail.

• When the region was not marked LI additionally, it was checked whether it could
contain NDI. If so, the pixel’s color was compared to the grid colors. If the colors
matched, the pixel was assigned to NDI.

• Otherwise, the pixel belonged to DI.

3. If the region was not marked DI, it was checked whether it was marked NDI and if so, it
was checked if one of the grid colors matched the current pixel’s color. If they matched,
the pixel was marked NDI.

4. If the pixel could not be assigned to any of the layers, it was checked whether the region
could contain LI. If so, the pixel’s color was compared to the text color. In case they were
similar enough, the pixel was denoted NDI.

The above-mentioned order was mainly reasoned by the priority of the groups. According to
these priorities, whenever a pixel was identified as data, even when it overlapped with grid or
text, it was assigned to DI. Therefore, the affinity to DI was checked first, and NDI afterwards.
Entailing the priorities, the affinity to the BG should have been examined last but was executed
in the beginning. This exception was made, as it was a very easy check that could save some
computation time.
After this iteration process, all pixels were assigned to either of the three groups (DI, NDI or
BG). In the development of the script, some pixels belonging to the data were wrongly detected
as grid pixels. This happened because some components of the data, for example the direct
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difference encoding and the statistic measures connections, were drawn using some nuance of
grey. As we know, the grid was also drawn using layering of transparent grey tones. To handle
this circumstance, functionality was introduced to reduce the number of wrongly detected grid
pixels. This entailed iterating over the regions marked as DI and NDI again, as falsely detected
grid pixels could otherwise only belong to DI. The surroundings of every pixel that was assigned
to the NDI was then examined once more. If a pixel belonged to the grid, either the top, right,
bottom or left adjacent pixel had to also belong to the grid. If none of them were assigned to
the NDI, it was assumed that the pixel was detected falsely. It was then re-assigned to the DI
group. This cleaning method only worked for ’floating’ pixels, that had no adjacent grid pixels.
Unfortunately, after cleaning up these wrongly detected pixels as explained, there still remained
pixels that were wrongly marked NDI. This happened at the borders of data components, where
adjacent pixels also contained grid colors. This error rate was overall quite low throughout the
evaluated images and was therefore accepted in the scope of this evaluation script, as it hardly
impacted the calculated ratios. The workings of the grid cleaning is demonstrated by means of
an example in Figure 23.

Figure 23: The effect of the grid cleaning is visualized in this image based on a cropped area from the
detected NDI image of a v-plot. Left: Wrongly detected grid pixels that were removed by
the script are marked red. Middle: Green marks pixels that were wrongly detected but could
not be removed by the script. Right: The detected NDI pixels when removing the wrongly
detected ’floating’ grid pixels (red).

With the completed execution of this phase, all pixels were unambiguously assigned to one of
the groups, therefore, divided into data-ink, non-data ink and background. Further, along with
their assignment, the pixels per group were counted. This was the basis for the last stage, the
ratio computations. To check for the correctness of the pixel assignments, the script offered
functionality to show and save an image per group. These images encoded the assigned pixels
per group, which were visualized through white color in an otherwise black image. The inter-
mediate output of this stage is shown in Figure 24. A mandatory check for whether all pixels of
the input image were assigned to a group concluded this stage.

Ratio computations

Finally, after executing the image processing and the pixel affinity detection stage, all values
needed for the ratio computations were available and the script could continue with the ded-
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Figure 24: Group affinity as determined and visualized by the script as optional intermediate output.
White pixels represent pixels assigned to the group. Black pixels depict pixels belonging to
other groups. Left: the original v-plot input image. Middle left: data-ink group (DI, priority
1). Middle right: non data-ink group containing labels and grid (NDI, priority 2). Right:
background group (BG, priority 3).

icated ratio computations stage. The ratio calculations worked on the basis of the counted
pixels per group. The ratios themselves were explained in section 3.2. The computations for
the foreground-background ratio and the data-ink ratio were pretty straight-forward and are ex-
plained subsequently:

Listing 4.1: Data-ink ratio calculation

#data-ink ratio

inkCount = DIcount + NDIcount

if inkCount > 0:

dataPercent = DIcount / inkCount * 100.0

nonDataPercent = NDIcount / inkCount * 100.0

else:

dataPercent = -1.0 #no ink present in the plot

nonDataPercent = -1.0

Listing 4.1 shows a code snippet from the script for calculating the data-ink ratio. It was slightly
adapted for better readability. The data-ink ratio was calculated as discussed in Section 3.2.
The script also handled the exceptional case where no ink was present in the plot, which hap-
pened when very little screen-space was available. The data-ink ratio was then set to a value
of -1.

Listing 4.2: Foreground-background ratio calculation

#foreground-background ratio

foregroundPercent = (DIcount + NDIcount) / totalPixelCount * 100.0

backgroundPercent = BGcount / totalPixelCount * 100.0

The code in listing 4.2 shows the calculation for the foreground-background ratio. Like in the
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data-ink ratio computation, its reciprocal value was also calculated, just in case we wanted to
visualize or examine it.

Listing 4.3: plot-side discriminability as ratio

#plot-side discriminability ratio

diffImage = np.zeros((leftPlot.shape[0], rightPlot.shape[1], 3),

dtype=np.uint8)

diffPixels = 0

equivPixels = 0

allPixels = leftPlot.shape[0] * leftPlot.shape[1]

#check for differences in plot side data-ink and write them to a new image

for w in range(leftPlot.shape[1]):

for h in range(leftPlot.shape[0]):

pixelL = leftPlot[h][w]

pixelR = rightPlot[h][w]

if np.array_equiv(pixelL, pixelR):

equivPixels += 1

else:

diffPixels += 1

diffImage[h][w] = [255, 255, 255]

diffPixelRatio = diffPixels / allPixels * 100

The discriminability ratio between v-plot sides could only be calculated for v-plot sides of the
same size. If v-plot side dimensions matched, the ratio was calculated as described in listing
4.3. For debugging purposes, an empty image in the size of a v-plot side was generated. It
encoded the found pixel differences through white pixels. As we know, the v-plot sides used the
same axes, just with the x-axis mirrored. In order to make a meaningful comparison between
plot sides, one side had to be mirrored so that their mapped spaces matched. The plot sides
were then iterated pixel by pixel. The discriminability between plot sides was determined based
on the previously denoted DI pixels. The grid pixels were ignored, as a slight offset between
grids would have distorted the ratio. More differences would have been recognized through
non-aligned grids, than a viewer would have actually perceived, as also discussed in Section
3.2. If the current pixels on both sides were either both DI or not DI, no difference was found
and it proceeded with the next pixel. If two pixels were compared and one of them was marked
DI while the other wasn’t, a difference was found. The respective pixel was then marked in
the discriminability image, as can be seen in Figure 25. Further, the difference counter was
increased by one. When the whole plot sides had been iterated, the discriminability ratio could
be computed as all required variables were known.
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Figure 25: The original v-plot image (left) and the plot sides with their differences as detected by the
script (right).

Matrix support

With the evaluation script working for a single v-plot, the first implementation step was finalized
and the matrix support was realized next. The data structures introduced for the single plot
evaluation were mostly reused. A new class, the MatrixEvaluation had to be created to make
the iteration of an input image containing a v-plot matrix possible. The new class further offered
functionality to calculate the ratios on a per-plot basis, except for the foreground-background
ratio. This decision was made so that the labels of the left legend and the bottom legend were
also taken into consideration for the evaluation. The MatrixEvaluation was created similarly to
the VisualizationEvaluation. The MatrixEvaluation needed an additional dimensionality param-
eter passed on creation. This parameter told the instance the shape of the matrix in the input
image. Another difference to the VisualizationEvaluation was, that the specified regions were
used to describe the region of a single v-plot of the matrix. Only the left legend was defined for
the whole image, as it only existed once in a v-plot matrix, and not per plot. Further, another
parameter describing the padding on the right of the whole matrix was introduced. In this case,
the existing right padding of the encodedImageRegion could not be overridden, as the v-plots of
a matrix had a padding on the right themselves. The part of the bottom legend containing only
the x-axis label was defined once for the whole matrix, while the bottom legend containing the
axis ticks, was defined per v-plot. On instantiation of the MatrixEvaluation, a VisualizationEval-
uation was created for each v-plot in the matrix. Therefore, the encodedImageRegions from
the MatrixEvaluation could be used, as they were already defined to match the single v-plots
of the matrix. Further, the input images that were needed for the creation of the Visualiza-
tionEvaluations were cropped from the image containing the matrix, to fit each v-plot. Finalizing
the creation of the MatrixEvaluation, a check was performed to assure that every pixel of the
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input image was either marked to belong to a v-plot, the right padding, the left legend, or the
bottom legend. The functionality to detect a pixel’s affinity was then performed through the Vi-
sualizationEvaluation per v-plot. Additional functionality that the MatrixEvaluation supplied, was
to iterate multiple v-plots of a matrix, as well as the left and bottom legend and to skip empty
spaces, which occurred due to the v-plots only existing in the upper left of the matrix diagonal.
The pixels of these empty spaces were marked as BG. After the pixel affinity detection was
completed, the three groups with their assigned pixels could be viewed as intermediate output
(see Figure 26). The ratios for the v-plot matrix were computed reusing the functions from the

Figure 26: From left to right: The original v-plot image, map containing the DI marked as white pixels,
map with the NDI and map with the BG as detected by the script.

VisualizationEvaluation class. The data-ink ratio was computed per v-plot and the arithmetic
mean was used as result. The regions containing bottom legend and the left legend of the ma-
trix were ignored in this case. The discriminability ratio between plot sides was also calculated
per v-plot, using their arithmetic mean as end result. The foreground-background ratio was
computed for the whole v-plot matrix image, including the bottom and left legend as well as the
empty space of the lower right half of the matrix.

Executing the evaluation script for a v-plot image was accomplished as demonstrated in the
following example in listing 4.4.

Listing 4.4: running the evaluation script

#run evaluation for a single v-plot

vplot = io.imread('../images/single/c0 - shapes/single_100x160_10bin.png')

regions = encodedImageRegion(Region(20, 44, 40, 116, [DI, NDI]), #left side

Region(60, 44, 40, 116, [DI, NDI]), #right side

Region(0, 0, 100, 44, [LI]), #bottom legend

Region(0, 44, 20, 116, [LI]), #left legend

Region(0, 0, 0, 0, [])) #right paadding

gridColors = [[243, 243, 243], [218, 218, 218], [229, 229, 229]]
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evaluation = VisualizationEvaluation(vplot, regions, gridColors=gridColors)

evaluation.showAreaEncoding() #optional

evaluation.countPixelsPerGroup()

evaluation.checkRegionCompleteness() #optional

#to print the results

evaluation.getCounts() #counts per priority layer

evaluation.printDataToInkRatio() #data-ink ratio

evaluation.printFGBGRatio() #forground-background ratio

evaluation.printNumDifferences() #discriminability of plot sides

Executing the script for a v-plot matrix worked similar, with only few discussed differences as
shown in listing 4.5.

Listing 4.5: runnning a matrix evaluation

vplot = io.imread('../images/multi/6/30bin/c2 -

all_layers/multi6_180x320_30bin.png')

regions = encodedImageRegion(Region(0, 2, 15, 66, [DI, NDI]), #left

Region(15, 2, 15, 66, [DI, NDI]), #right

Region(0, 0, 39, 2, [LI]), #bottom legend

Region(0, 0, 25, 272, [LI]), #left legend -> not used

Region(30, 2, 9, 66, [])) #right padding

#legends of whole image

leftLegend = encodedImageRegion(leftLegend=Region(0, 0, 25, 272, [LI]))

bottomRegion = encodedImageRegion(bottomLegend=Region(0, 0, 180, 48, [LI]))

gridColors = [[244, 244, 244]]

evaluation = MatrixEvaluation(vplot, regions, leftLegend, bottomRegion,

dimPlots=4, gridColors=gridColors)

evaluation.defaultRightPadding = 8 #of whole image

evaluation.showAreaEncoding() #optional

evaluation.countPixelsPerGroup()

evaluation.checkRegionCompleteness() #optional

#to print the results

evaluation.getCounts()

evaluation.printDataToInkRatio()

evaluation.printFGBGRatio()

evaluation.printNumDifferences()

For the evaluation, various files were created, that contained the evaluation execution calls
for a subset of the v-plot input images. For further automation, another short Python script was
written, that called these scripts and executed them one after another (see listing 4.6).

Listing 4.6: run multiple evaluations one after another
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import os

directory = "./"

for file in os.listdir(directory):

if file.endswith(".ipynb"):

#filter which evaluations to run (single or matrix of dimensionality)

if "single" in file:

name = directory + file

print(name) #optional: to structure output

%run $name

5 Evaluation

In our implementation in Visplore by VRVis, the v-plot view was usually shown as part of a
dashboard, that contained many other views. This led to the circumstance that there was only
a limited amount of screen-space available for displaying the v-plots. Therefore, we needed to
determine the minimal amount of screen-space, where v-plot matrices would still be readable.
The main focus for this evaluation lay on the scalability of the v-plot matrix in relation to the
given screen-space in pixels. Further factors we wanted to test for, that might influence the
scalability, were matrix dimensionality, the number of bins, and the complexity of the used v-
plot layer configuration. Factors that were not taken into consideration, which might affect the
scalability, were user interactions and a variable information space.

5.0.1 Evaluation setting

To cover a variety of different configurations of the v-plot visualization, the evaluation was per-
formed on multiple v-plots with the following settings:

• Screen-space: The plots were evaluated on various screen-spaces. The resolutions
were based on the screen sizes for responsive designs, as defined by Bose [12]. We
further added some smaller resolutions. The used sizes in ’pixel (px)’ were (width x
height): 100x160px, 180x320px, 360x640px, 414x896px and 1366x768px. Examples for
resulting v-plots of that size can be seen in Figure 27.

• Matrix dimensionality: Because the screen-space per v-plot varied strongly with the
number of v-plots that were displayed in the view, the evaluation was performed on a
single v-plot as well as on v-plot matrices of various dimensionality. Those dimensions
were (with their effectively shown v-plots): 3x3 (3 plots), 4x4 (6 plots), 5x5 (10 plots) and
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6x6 (15 plots). The current matrix representation only showed v-plots in above the matrix
diagonal, to prevent displaying a v-plot repeatedly.

• V-Plot layer configurations/complexity: Because different v-plot layer configurations
used up varying amounts of screen-space, the different complexities were taken into ac-
count for the scalability evaluation.
Three different complexities of v-plot layer configurations were used for the evaluation:

– "Complexity 0" (c0): Only displayed the distribution layer as shape-based distribu-
tion. All other layers were not shown.

– "Complexity 1" (c1): Displayed the histogram with the direct difference encoding as
histogram and statistic measures (standard deviation and mean) without a connec-
tion.

– "Complexity 2" (c2): Displayed all layers of the plot. This included a histogram
and the direct difference encoding being represented as both: histogram and shape.
Further the distribution was shown as shape-based distribution and the statistic mea-
sures (standard deviation and mean) were shown, using lines and area as connec-
tion.

• Number of bins: The number of used bins affected the detail of the representation of the
data in the v-plots strongly. Therefore, the evaluation was performed with the following
number of bins: 5, 10, 30, 50, 75.

Considering all these factors, the evaluation was performed on 5 resolutions x 5 dimensions x
3 complexities x 5 bin counts = 375 different images of v-plots in total.

Figure 27: The resolutions used to render v-plots. Visualized side by side and labelled, measurements
are in pixel. Images are an excerpt of the exported images used for the evaluation. They
show a matrix of dimensionality 3, layer complexity c1 and use 10 bins.
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Input data

The images to be used for the evaluation were exported as Portable Network Graphics (PNG)
images from Visplore by VRVis. The software already provides an export function for PNG
images, including several configuration options for the view. This allowed for creating a view
of a specified size, as well as hiding the coloring legend. This was useful as the images had
to be exported manually. The exported images showed single v-plots as well as square v-plot
matrices of up to dimensionality 6. As broken down in the previous subsection, the input data
for the evaluation was made up of 375 images in total. The data that was used to generate
the v-plots was taken from the PV dataset, that was introduced in Section 2.2.3 and that was
also used to demonstrate the v-plot use cases in Section 2.2.3. To generate the input images
for the evaluation, various data channels containing information about the a-Phase voltage
recorded at different locations were used. In the field of power generation, the term a-phase
voltage is used to describe the voltage on the a-phase, which is one of the phases of a three-
phase system. Such a three phase system is often used used for transmitting the generated
power, in this case, of the solar plant. Therefore, the a-Phase voltage channels of the dataset
inform us about the distribution of the current load on the related a-phase. Recordings at 6
different imaginary locations made it suitable for a meaningful comparison in the shape of a
v-plot matrix of up to dimension 6x6, effectively displaying 15 v-plots at once. Using samples
from the recorded "A Phase Voltage" at different locations made sure that the v-plots showed
a meaningful comparison, using channels with a similar value space but with different enough
distributions.

5.0.2 Results

The results of the v-plot matrix evaluation using the Python script are presented in the follow-
ing subsections. All calculated ratios were stored in a table and can be found in the Appendix
A.4. The results of the three different ratios are first presented and interpreted for themselves
and then examined for correlations and their assumed effectiveness afterwards. For a better
illustration of the results, the interactive data visualization software Tableau [71] was used to
visualize them. Several visualizations can be found in the Appendix A.6.
In addition to interpreting the visualized test results, a two-tailed Student’s t-test as statistical
hypothesis test was performed on basis of the three computed ratios of various v-plots of dif-
ferent resolutions. Multiple tests were performed where the test set contained subsets of the
computed ratios, classified by the respective resolutions. This resulted in a total of 5 test sets
per ratio, each consisting of 75 samples. Multiple pairings of these test sets are examined in the
following sections. Comparing the means of these test sets revealed whether predictions about
the test set’s ratio of one resolution could be made, based on the calculated ratios of the test
set of another resolution. This was not possible when the natures of the test sets’ ratios differed
too strongly, which indicated bad scalability between the test sets. Different classifications used
for the creation of the test sets helped indicate which v-plot configurations (dimensionality, com-
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plexity, bin count) had a bigger effect on the overall scalability than others. The null hypothesis
H0, that was used throughout was generally formulated as follows:

"Varying the v-plot resolution leads to no significant change in the specified ratio."

This null hypothesis was slightly adapted for each tested ratio.
Hence the basis for the alternate hypothesis Ha was:

"Varying the v-plot resolution leads to a significant change in the specified ratio."

For all conducted t-tests it was defined, that a measured p-value below the significance level
of α = 0.05 rejected the null hypothesis H0, therefore, proving the alternate hypothesis Ha

that there was a significant change in the specified ratio between the tested resolutions. The
Student’s t-test was calculated using the respective T.TEST() [54] function that was supplied
by the Microsoft Excel software [53]. It calculated and returned the p-value for the given test
sets. To make sure that the performed t-tests had credibility, the variance of each test set
was calculated first. If the variances of two test sets differed too strongly (as a rule of thumb we
used var1 > 2var2 or var2 > 2var1 as stated by Hemmerich [29]), the parameters passed to the
T.TEST() function were changed accordingly. This led to using a test method for heterogeneous
variances instead, making sure that the test results stayed valid [29]. It is assumed that in this
case a Welch’s t-test was performed by the software, but this was not explicitly stated in the
documentation [54]. This assumption was also supported through [46].

Data-ink ratio

For single v-plots, the data-ink ratio showed a relatively linear trend that increased over growing
plot sizes. This could also be observed in v-plot matrices, but with the exception that matrices
starting with dimensionality 3, partially had a 100:0 data-ink ratio on a 100x160 resolution. This
was due to the fact that there were no grid lines visible and the grid labels were not taken into
consideration when calculating the data-ink ratio for matrices. Further, matrices that had a di-
mensionality of 5 or higher, showed no non-data ink at on smaller resolutions than 360x640px.
A higher complexity generally resulted in a higher data-ink ratio. This made sense, because
with an increasing complexity, more v-plot layers were drawn. Changing the used bin counts
did not affect the overall trend greatly. An increasing bin count led the data-ink ratio to generally
decrease. This might have been due to the fact, that smaller bins used up less space and thus
the distribution could be represented in more detail. This meant that distributions showed more
peaks and lows, which were not visible with a lesser bin count.
The display of grid lines greatly affected the data-ink ratio. Whenever the size of a v-plot
changed, it was re-calculated whether the horizontal and/or vertical grid lines should be vis-
ible and how many ticks should be used per axis. This led to sudden visible changes in the
data-ink ratio. Mostly, when grid lines became visible, that were not shown in the preceding
resolution. These sudden changes were especially visible in v-plots matrices of dimensionality
5 and 6 between the resolutions 360x640px and 1366x768px, as can be seen in Figure 28.
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Figure 28: It shows the data-ink ratio over resolutions of the evaluated v-plot matrices with dimensionality
6. Each colored line represents one v-plot configuration (5 bin counts and 3 complexities
resulting in 15 lines) of matrices with dimensionality 6. It shows a 100:0 data-ink ratio for all
v-plots with resolutions of 100x160px and 180x320px. An extreme case occurred when using
75 bins and a complexity of c0. It can be seen, that when these configurations where used
on a resolution of 100x160px, the result got negative (-1). Therefore, the data-ink ratio could
not be calculated for this v-plot matrix as there was no ink available. This plot was generated
using the Tableau software [71].

The resulted data-ink ratios spanned a range from 4.51% of data-ink to 100%, which strongly
depended on the combination of the used v-plot configurations. Overall, for each dimensional-
ity, the configuration resulting in the lowest data-ink ratio was using c0 and 75 bins, while the
highest data-ink ratio occurred through the usage of c2 and 5 bins. Resulting in a difference of
74,15% on average between these two configurations that were used over different dimensions
and resolutions. This showed that the number of bin counts and complexity strongly affected
the data-ink ratio.
One recorded extreme case was a matrix of dimensionality 6 that used a resolution of
100x160px and complexity c0 (showing only a shape-based distribution). This resulted in no
ink being drawn at all, as there were insufficient pixels to represent the value range with enough
detail (also visible in Figure 28).
To perform the t-test for the data-ink ratio, the appropriate null hypothesis H0D and the alternate
hypothesis HaD were formulated:

H0D: "Varying the v-plot resolution leads to no significant change in the data-ink ratio."
HaD: "Varying the v-plot resolution leads to a significant change in the data-ink ratio"

Looking at the resulting p-values of the t-tests, which can be seen in Figure 29, significant
changes appeared involving the test sets that contained smaller resolutions like 100x160px
and 180x320px. The null hypothesis H0D was rejected between the resolutions (100x160px,
180x320px), (180x320px, 360x640px) and (100x160px, 360x640px), which indicated that the
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scalability for these small resolutions is bad. Further significant changes between (100x160px,
1366x768px) and (180x320px, 1366x768px) supported this assumption. Comparisons of in-
creasing resolutions starting with 360x640px supported H0D and therefore, suggested good
scalability.

Figure 29: T-test results for the data-ink ratio: The p-values of the executed t-tests between different
pairings of the test sets. The span of the cells containing the p-values indicate which test
set pairing it belongs to. Meaning the left border of a cell marks the first test set used in the
pairing and the right border of the cell resides in the column of the second test set. Green
highlighted cells mark p-values smaller than the significance level α = 0.05 and therefore,
rejecting the null hypothesis H0D and supporting the alternate hypothesis HaD. The table
was generated using Microsoft Excel [53].

Foreground-background ratio

The foreground-background ratio generally returned low percentages of pixels that contained
foreground. More precisely, all images contained more background than foreground. Across all
images, the measured foreground occupied spaces in the range of 0.9% up to 31.89% of the
respective image. As opposed to the data-ink ratio, there was no case where the FG:BG ratio
could not be calculated. Further, no extreme case like, e.g., a 100:0 ratio occurred. The overall
trends of the FG:BG ratio stayed linear, although the slopes varied quite strongly when the
dimensionality of the matrix was changed. Single v-plots showed a slightly decreasing linear
trend over an increasing resolution. Matrices of dimensionality 3 and 4 showed a similar trend,
but with a slightly increasing foreground-background ratio for smaller resolutions. Matrices of
dimensionality 5 and 6 showed a similar trend but were very heavily influenced by the change
of the grid display between resolutions, which led to more fluctuating values (an effect that was
also discussed having an impact on the data-ink ratio). Varying the complexity mainly affected
the value span of the resulting ratios but less the overall trend. A higher complexity generally
led to a higher FG:BG ratio and vice versa. Increasing the bin count led to a decrease of the
FG:BG ratio. Therefore, the dimensionality seemed to have had the biggest influence on the
foreground-background ratio. The biggest differences were observed between single v-plots
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Figure 30: This plot was generated using the Tableau software [71]. It shows the trend of the FG:BG ratio
over different resolutions. Blue colors encode all images of v-plot configurations containing a
single v-plot. Nuances of red represent all v-plot matrices using a higher dimensionality (3, 4,
5 and 6).

Figure 31: T-test results for the foreground-background ratio: The p-values of the executed t-tests
between different pairings of the test sets. The span of the cells containing the p-values
indicate which test set pairing it belongs to. Meaning the left border of a cell marks the first
test set used in the pairing and the right border of the cell resides in the column of the second
test set. Green highlighted cells would mark p-values smaller than α = 0.05 and therefore,
reject the null hypothesis H0F . As can be seen, all t-tests performed for the FG:BG ratio
supported the null hypothesis. The table was generated using Microsoft Excel [53].
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(dimensionality 1) and all v-plot matrices of a higher dimensionality, as drastic changes of the
slope and the value range appeared, as seen in Figure 30. Other than that, the FG:BG ratio
indicated, that the v-plots scaled well across resolutions without any major information loss.
Similar to how it was done for the data-ink ratio, the hypotheses for the t-tests were adapted for
the FG:BG ratio, where H0F was the null hypothesis and HaF was the alternate hypothesis:

H0F : "Varying the v-plot resolution leads to no significant change in the
foreground-background ratio."

HaF : "Varying the v-plot resolution leads to a significant change in the foreground-background
ratio"

A quick look at the table in Figure 31 reveals that all performed t-tests for the FG:BG ratio
resulted in p-values above α = 0.05. Therefore, all examined test set pairings supported the
null hypothesis H0F . Seeing that no significant changes were detected in the t-tests, suggested
a good scalability over all tested v-plot resolutions.

Discriminability of v-plot sides as ratio

The discriminability ratio between v-plot sides was especially interesting as it represented how
much of a difference between the v-plot sides would have been perceived by a viewer. Overall,
different pixels between plot sides ranged from 0.92% to 27.02% of the total pixels of a v-plot
side. Very low values indicated v-plots with low discriminability.
Looking at the discriminability ratio visualized, it can be seen that the difference between plot
sides showed a very steady linear and slightly decreasing trend over increasing resolutions for
images of single v-plots. V-Plot matrices showed similar results, but had slightly different trends
for small resolutions. Those deviations increased with the used complexity. Complexity c0 re-
sulted in still mostly linear trends. Complexities c1 and c2 showed a higher discriminability ratio
between plot sides, especially on small resolutions. Bin counts including 30 and above led to
higher discriminability ratios as well. Whereas a bin count of 5 and 10 showed much less of a
deviation for small resolutions from the linear trend. An extreme case at dimensionality 6 and a
resolution of 100x160px is also visible looking at the discriminability ratio. This case occurred
because without any data-ink, the discriminability ratio could not be calculated.

Several t-tests were performed based on the measured differences between v-plot sides, to
find out whether they lose their discriminability on certain resolutions. The respective hypothe-
ses were formulated as follows:

H0S : "Varying the v-plot resolution leads to no significant change in the discriminability of
v-plot sides as ratio."

HaS : "Varying the v-plot resolution leads to a significant change in the discriminability of v-plot
sides as ratio"
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Further, it was examined whether this loss could be linked to specific v-plot properties like bin
count, dimensionality or complexity. First, the t-tests were performed on test sets classified
only by the resolution. Their resulting p-values can be seen in Figure 32. As the highest res-

Figure 32: T-test results for the discriminability ratio: The p-values of the executed t-tests between
different pairings of our test sets. The span of the cells containing the p-values indicate which
test set pairing it belongs to. Meaning the left border of a cell marks the first test set used
in the pairing and the right border of the cell resides in the column of the second test set.
Green highlighted cells mark p-values smaller than α = 0.05 and therefore, rejecting our null
hypothesis H0S and proving the alternate hypothesis HaS . The table was generated using
Microsoft Excel [53].

olution (1366x768px) of our test set contained the most screen-space per v-plot it had to be
showing the most detail. A higher level of detail influenced the visible differences between
plot sides. Therefore, we were especially interested in seeing whether H0S was confirmed
when comparing large and small resolutions. As we can see in the table in Figure 32, the
p-values that resulted from the pairings (180x320px, 1366x768px), (360x640px, 1366x768px)
and (414x896px, 1366x768px) were above α = 0.05, and therefore, supported the null hy-
pothesis H0S . Testing for (100x160px, 1366x768px) and (100x160px, 360x640px) both yielded
p-values below α = 0.05, disproving H0S for these two cases. For these pairings, the alternate
hypothesis HaS was confirmed. From that we conclude that the significant changes measured
between large and very small resolutions resulted in a major loss of detail in the v-plots, making
only screen-space above 100x160 pixels recommendable for displaying v-plots. The p-value
that resulted from (100x160px, 180x320px) also supported Ha, showing that in fact the differ-
ence between these smaller resolutions was significant.
Further t-tests regarding the discriminability ratio were performed on different subsets of the
data. The null hypothesis and the alternate hypothesis stayed unaltered. What changed was
the test set, which was adapted for each formulated question. The tables containing all p-values
that were tested for, and the related test sets along with the information about their classification
can be found in appendix A.5.
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First, we generated new test sets through classification by dimensionality and examined the
resulting p-values of various pairings. Classifying by dimensionality led to smaller test sets,
consisting of 15 values per test set. The results of these test sets are summarized here while
the complete test results can be found in Appendix A.5.1.

• Dimensionality 1 (single plot), 4 and 6: P-values of various pairings supported H0S , that
there was no significant difference between resolutions. This indicated that their discrim-
inability scaled well throughout resolutions.

• Dimensionality 3 and 5: Showed significant differences involving parings with the small-
est resolution: (100x160px, 180x320px), (100x160px, 360x640px) and (100x160px,
1366x768px). These test pairings showed a discriminability loss for smaller resolutions,
similar to the test data without classification.

This indicated that significant changes alternated with the used dimensionality. Further, it sug-
gested that there were certain matrix dimensions that scaled better than others. The complete
test results for the classification by complexity can be found in appendix A.5.2. When examining
the p-values for the test sets that were classified by the used complexity, no significant changes
for c0 occurred, supporting H0S . In both classifications, c1 and c2 very small p-values with pair-
ings including the smallest resolution resulted. HaS was supported for test sets using c1 and c2
for the resolution pairings (100x160px, 180x320px), (100x160px, 360x640px) and (100x160px,
1366x768px) therefore, indicating there were significant differences. Complexity c0 scaled well
over all tested resolutions, while c1 and c2 showed similar scaling behaviour to the test sets
without further classification. This indicated that the complexity played an important role in the
discriminability between plot sides.
Last but not least, we examined the effect of the used bin count on the v-plot discriminability
throughout different resolutions. Their complete test results can be found in appendix A.5.3.
Our hypotheses H0S and HaS remained as they were but the test sets were created accord-
ingly. Using 5 bins or 50 bins yielded overall p-values above α = 0.05, supporting H0S , that
there were no significant changes. Pairings using 75 bins showed only significant differences
when looking at (100x160px, 1366x768px). Using 10 bins yielded significant changes between
test sets including the smallest resolution: (100x160px, 180x320px), (100x160px, 360x640px)
and (100x160px, 1366x768px). Test sets using 30 bins showed less significant changes, only
between (100x160px, 1366x768px). Overall, this showed that the bin count had no specific
influence on the discriminability between v-plot sides. Many significant changes could be ob-
served in pairings including the smallest tested resolution (100x160px).

5.0.3 Interpreting the ratios

To start off this chapter, the questions formulated in Section 3.2 can be answered as follows:

• How well do v-plots scale with respect to the available screen-space?
Observing the calculated ratios revealed a linear trend over the tested resolutions. Ex-
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ceptions could be seen for small resolutions like 100x160px and in the case of matrices
also for 180x320px. The conducted t-tests back up this assumptions as they revealed
significant changes when the test sets involved these small resolutions.

• How do bin count, matrix dimensionality and layer configurations affect the scaling
of v-plots?
Bin count: The data-ink ratio generally decreased with an increasing bin count. The
decrease in the data-ink ratio was caused by the change in the visualization, displaying
the data with higher granularity and therefore, uncovering more peaks and lows. The
decreasing FG:BG ratio with an increasing bin count most likely also came from the fact
that generally less ink was used when the data was visualized with more peaks and lows.
The discriminability ratio generally showed higher values with a decreasing bin count and
a steeper decrease over growing resolutions for higher bin counts. Summarizing, the re-
sulting ratios indicated that if the bin count was chosen from a reasonable range, like it
was for the v-plots of the test set, it was not a main factor that caused the linear trend (that
indicated good scalability over resolutions) to deviate.
Dimensionality: Matrices of high dimensionality showed no non-data ink on small res-
olutions. In an extreme case, that used dimensionality 6 and a resolution of 100x160px,
showed no ink at all. Therefore, the discriminability ratio could not be calculated. The
FG:BG ratio was strongly affected by whether a single v-plot or a matrix was shown. The
dimensionality affected the discriminability ratio strongly, although there was no certain
correlation describing this effect, as it seemed to be alternating with the number of used
dimensions. Depending on the used dimensionality, many significant changes in the dis-
criminability ratio or non at all could be seen between resolutions. Overall, it seemed that
the higher the dimensionality, the larger the deviation from the linear trend. This could be
seen having a stronger effect when small resolutions were used.
Complexity: Higher complexities resulted in higher data-ink ratios, higher FG:BG ratios
and a higher discriminability ratio. Otherwise, the complexity seemed to not influence the
overall trend of the ratios greatly.

• Under what circumstances do the v-plots lose their discriminability?
As elaborated in more detail in subsection 5.0.2, the performed t-tests indicated that v-
plots lost their discriminability on resolutions <= 180x320 px.

The fact that all ratios measured for single v-plots (matrix dimensionality 1) scaled more or less
linearly over the tested resolutions indicated that there was no ideal size for single v-plots in the
range of the tested resolutions. For v-plot matrices, it seemed that resolutions up to 180x320px
were insufficient for a lossless display, but matrices scaled well on screen-spaces larger than
that. This was indicated by the results of the t-tests, that were performed for the data-ink ratio
and further supported by looking at the 100:0 data-ink ratio on small resolutions (except for
single v-plots). While the data-ink ratio suggested that a resolution of at least 360x640px was
needed, the discriminability ratio implied that a resolution of 180x320px was suitable for a loss-
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less display. Further supporting the assumption that a resolution of 100x160px was insufficient,
was the extreme case where no data-ink was present in the image. This appeared when a
high matrix dimensionality was used in combination with a low layer complexity on the smallest
tested resolution. The occurrence of this special case strongly suggested bad scalability for
these conditions. Observing the FG:BG ratio implied otherwise, as it showed a generally linear
trend over all tested configurations.

In terms of examining how well the proposed ratios performed in testing for visual scalability,
the following findings were noted. While the data-ink ratio and the discriminability ratio indi-
cated that v-plots did not scale well for small resolutions, this was not visible in the foreground-
background ratio at all. It was neither apparent when looking at the visualized results nor when
looking at the conducted t-tests. Further, the extreme case where no ink was displayed in the
image, was picked up by the data-ink ratio and the discriminability ratio but not by the FG:BG
ratio. This cast doubt on the expressiveness of the foreground-background ratio regarding the
v-plot scalability and the way it was measured for matrices. One reason for that outcome was
the handling of labels when calculating the FG:BG ratio. Since the labels were rightly counted
to the foreground pixels, it was never checked whether there was otherwise no ink present in
the image. This made it impossible to detect a complete loss of data-ink in the v-plots through
calculating the FG:BG ratio.
Summing up the interpretation of the ratios, the question of how much screen-space must be
dedicated to the v-plot view that was implemented in Visplore by VRVis is answered. The
FG:BG ratio implied that the v-plots scaled well over all tested resolutions. But referring to
its partially contrary results as opposed to the results of the other ratios, the FG:BG ratio did
not serve as basis for this answer. Looking at the other ratios, it can be said, that generally a
screen-space above 180x320px and larger was sufficient for a lossless display. Single v-plots
were effectively shown on the smallest tested resolution of 100x160px. Other configurations
than the dimensionality of the v-plots generally did not need be considered to ensure good
scalability.
The proposed data-ink ratio and the discriminability ratio appear to be good indicators for visual
scalability as they proved to be sensitive to greater changes in the visualization. The effec-
tiveness of the proposed foreground-background ratio is questioned because it ignored the
complete loss of actual data information in v-plot matrices for small resolutions.

6 Conclusion

An introduction to the basics in the field of data visualization, visual analytics and data compar-
ison was given. Common visualization techniques were explained and the concept and usage
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of hybrid data visualization techniques were elaborated. Of special interest for the purpose of
this thesis were the v-plots, which were explained. Further, their usage was demonstrated by
means of two use cases.
The v-plot visualization was then integrated into the software Visplore by VRVis. Therefore,
the workings of the existing histogram view were analyzed and explained. Then the histogram
view was extended to support computing and displaying single v-plots and v-plots in a matrix
arrangement. The layers of the v-plot could be adapted in a variety of ways through user in-
teraction. The fact that the v-plot view in Visplore by VRVis was usually visible as part of a
dashboard along with other views, gave rise to the question of how much screen-space was
needed by the view to display its information effectively. To find out how well the implemented
v-plots scaled, based on the available screen-space in pixels, it was looked at existing methods
to evaluate data visualizations. For the evaluation that was part of this thesis, three pixel-based
ratios, that were based on existing concepts were proposed. The introduced ratios consisted of
the data-ink ratio, the foreground-background ratio and the discriminability between v-plot sides
as ratio. These ratios were tested and used for the evaluation of the scalability of the v-plot
implementation. For the calculation of the ratios, a script was implemented in Python. The
script operated on input images that were produced by the v-plot implementation in Visplore
by VRVis. With some additional manually specified parameters, the script calculated the three
evaluation ratios for a total of 375 input images that were exported from the implementation in
Visplore by VRVis. These images contained various differently configured v-plots and v-plot
matrices. The resulted ratios were visualized and interpreted. Further, several two-tailed sta-
tistical hypothesis tests were performed on the results to support or reject the findings. The
assumption was made, that the data-ink ratio and the discriminability ratio seem descriptive for
the scalability of the v-plots, while the foreground-background ratio lacked sensitivity to some
drastic changes in the visualization. Therefore, the effectiveness of the foreground-background
ratio as a tool to evaluate visual scalability was questioned. Otherwise, looking at the data-ink
ratio and the discriminability ratio, the visual analysis and the statistical hypothesis tests sug-
gested that a resolution of 180x320px is sufficient for a view containing v-plot matrices and as
little screen-space as 100x160px is enough for views containing only a single v-plot.

6.1 Contributions

The v-plot implementation in Visplore by VRVis extended the software by another unique view
mode. It supported preset configurations and also allowed for configuring it explicitly. It was
integrated using the software’s coloring legend and made sure to distribute colors thoroughly,
so that v-plot sides stay traceable to their related data channel through every v-plot layer config-
uration. Further, the implemented view supported cross-filtering between the v-plots and other
views of the dashboard, allowing for more advanced interactions.
We observed the trend of three calculated ratios that were based on existing concepts to make
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an assumption about the scalability of a visualization technique. To test the effectiveness of
the ratios as a tool for evaluating visual scalability, and to test for the scalability of the v-plot
implementation, a script was written that computed the proposed ratio on the basis of an image
and manually defined input parameters. The script was written in a way that it could be adapted
to be applicable to images containing other visualization techniques easily. It supported the
ratio calculations for images containing a single plot and also for images containing a matrix
of plots. Applying this approach revealed that the data-ink ratio and the discriminability ratio
showed mostly linear trends over various v-plot sizes, suggesting them to be valid indicators
for the scalability of a visualization technique. While the foreground-background ratio partially
failed to detect some information loss.

6.2 Outlook

Quite a few topics were tackled in the context of this thesis, that may be worth looking into
further. One of them are improvements for the v-plots. Additional layers containing further data
visualization techniques for the v-plots could be researched. Another possibility is to expand the
visualization options for the existing layers. Concerning this, Blumenschein et al. [11] already
specifically proposed researching the integration of dot plots into the v-plots and to experiment
bringing a measure for uncertainty to the v-plot visualization.
Concerning our v-plot implementation, the developed matrix implementation could be extended
to use up the space of the diagonal and in the lower right half. As an example, the diagonal
space could be used for labelling the columns and rows. This would also solve the problem of
needing a certain coloring for each layer configuration, as the data of a v-plot side would no
longer only be relatable through its color. Alternatively, the space in the lower right half of the
view could be used to show v-plots with a different configuration, following the example of the
v-plot designer [8] by Blumenschein et al. [11]. In our implementation, the v-plots of a matrix
appeared in the same order in which the assigned data channels were loaded. As further im-
provement, providing an automatic sorting of the v-plots of a matrix by a variety of factors could
be integrated. An example would be to sort the v-plots by the absolute differences between the
two v-plot sides or by their image similarity.
The evaluation script to calculate the ratios was written to support the v-plots, but with the ex-
tension of its applicability to other visualization techniques in mind. Therefore, it could easily be
adapted and applied to evaluate other visualization techniques.
Future research could investigate the proposed evaluation ratios further, to find out how rep-
resentative they are for the actual human perception. This is especially interesting for the
discriminability ratio as it is meant to resemble the difference between plot sides as perceived
by the viewer. For the data-ink ratio and the FG:BG ratio, the trend across resolutions is to be
compared to the perceived changes by the viewer. The data-ink ratio and the discriminability
ratio showed similar results, whereas the foreground-background ratio differed. Therefore, a
user study could clarify which ratio resembles the human perception of a visualization the clos-
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est. Based on that, each ratio could either be supported in being effective or be rejected as
a tool to evaluate visual scalability. Referring to this findings of this thesis, it would especially
clarify whether the assumption that the data-ink and discriminability ratios seem to uphold more
expressiveness about the scalability than the foreground-background ratio, is supported.
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Figure 20 Defined regions of a v-plot image. V-plot image is taken from the input data
set. Left: The image can be split into the following six regions: 1) left legend,
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Figure 21 In the upper row on the right are several images containing only black and white
pixels. White pixels encode pixels recognized as text. Below them are extracts
of the original image, showing the remaining pixels that are counted to BG. 1)
The original input image, that contains text in the form of labels. To demon-
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4) A distance parameter of 0.8 yielded satisfying results, sorting darker pixels
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A Appendix

A.1 Photovoltaic (PV) Solar Panel Energy Generation data

License Statement for Photovoltaic and Weather dataset:
"Contains public sector information licensed under the Open Government Licence v3.0."
Source of Dataset (in its original form): https://data.london.gov.uk/dataset/photovoltaic–pv–
solar-panel-energy-generation-data
License: UK Open Government Licence OGL 3: http://www.nationalarchives.gov.uk/doc/open-
government-licence/version/3/

——–
Dataset was modified to fit the needs and purposes of demonstrating USPs of the Visplore

software. E.g. - geographic places were anonymized, - time rasters were changed and synchro-
nized, - a few data quality issues were introduced for showcase purposes - technical column
names were modified for simpler explanation + as not to confuse at first glance with original,
unmodified dataset.
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A.2 The v-plot implementation in Visplore by VRVis

Figure 33: A screenshot from the v-plot visualization that was implemented in Visplore by VRVis. Here, it
can be seen being used in a dashboard, that was arranged for the visualization and analysis
of the trends and distributions of data. As can be seen here, he selection of more than two
data channels, leads to the v-plots being shown in a matrix arrangement. On the top right,
the V-Plot configuration dialogue can be seen. It contains the layer configuration options and
offers the functionality to set the bin count. The options that were set in this dialogue, resulted
in the displayed v-plots in the view below.

A.3 Evaluation script

Listing A.1: Visualization evaluation script

#Buesch Nadine 2021/2022
#Script for computing pixel−based ratios used in the evaluation of v−plots

from skimage import io
import numpy as np
import matplotlib .pyplot as plt
import matplotlib
#PRIORITY OF EVALUATION LAYERS:
DI = "dataLayer" #contains data and/or background − prio1
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NDI = "gridLayer" #contains grid and/or bg − prio2
LI = "labelsLayer" #contains labels and/or bg − prio2 (special case of NDI)
#BG only logical concept and therefore, not needed in the computation− prio3

#defines an area in image space and the layers it can contain
class Region:

def __init__( self , x=0, y=0, width=0, height=0, layers =[]) :
self .x = x
self .y = y
self .width = width
self .height = height
self . layers = layers

#contains a specific number of Regions, that make up a single v−plot
class encodedImageRegion:

def __init__( self , plotLeft =Region(0, 0, 0, 0, []) , plotRight=Region(0, 0, 0, 0, []) ,
bottomLegend=Region(0, 0, 0, 0, []), leftLegend=Region(0, 0, 0, 0, []) ,
rightPadding=Region(0, 0, 0, 0, []) , middleLegend=Region(0, 0, 0, 0, [])) :

self .regions = [ plotLeft , plotRight , bottomLegend, leftLegend, rightPadding, middleLegend]
self . plotLeft = plotLeft
self . plotRight = plotRight
self .bottomLegend = bottomLegend
self . leftLegend = leftLegend
self .rightPadding = rightPadding
self .middleLegend = middleLegend

def GetMatrixPlotWidth(self, withRightPadding=True):
if withRightPadding:

width = self . plotLeft .width + self . plotRight .width + self .rightPadding.width +
self .middleLegend.width

else:
width = self . plotLeft .width + self . plotRight .width + self .middleLegend.width

return width

def GetMatrixPlotHeight(self) :
height = self . plotLeft .height + self .bottomLegend.height
return height

from skimage.util import img_as_float, img_as_ubyte

#the maximum distance two RGB colors can have
#is used to check similarity of colors
maxColorDist = np.sqrt(np.sum((np.array([0, 0, 0]) − np.array([255, 255, 255]))** 2, axis=0))
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#Evaluation class
class VisualizationEvaluation :

def __init__( self , original , regions, labelColor=[0, 0, 0],
gridColors=[[229, 229, 229], [206, 206, 206]],

backgroundColor=[255, 255, 255],
dataColors=[[238, 238, 238], [146, 146, 146]]) :

self .dataColors = dataColors #colors used for LI and DI regions
self . labelColor = labelColor #text color
self .gridColors = gridColors #used for the grid
self .bgColor = backgroundColor

#the input image and its dimensions
self .originalImage = original
self .width = original .shape[1]
self .height = original .shape[0]

#empty/black images with size of the original
#to be filled with white pixels of the specified layer
self .DIimage = np.zeros((self.height, self .width, 3), dtype=np.uint8)
self .NDIimage = np.zeros((self.height, self .width, 3), dtype=np.uint8)
self .BGimage = np.zeros((self.height, self .width, 3), dtype=np.uint8)

self .regions = regions
self .encodedImage = self.createAreaEncodedImage(regions)

#storing pixel count per layer
self .DIcount = 0
self .NDIcount = 0
self .BGcount = 0
self .count = self .width * self .height

#Debug function to output layer pixel counts
def getCounts(self):

if self .DIcount > 0 or self .NDIcount > 0:
print ( "DI: " , self .DIcount)
print ( "NDI: " , self .NDIcount)
print ( "BG: ", self .BGcount)
print ( " All pixels : " , self .count)

#Calculates and outputs the FG:BG ratio based on the computed pixel counts
def printFGBGRatio(self):

foregroundPercent = (self .DIcount + self .NDIcount) / self .count * 100.0
backgroundPercent = self.BGcount / self.count * 100.0
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print ( "FG : BG = ", " {0:.2 f }" .format(foregroundPercent), ": " ,
" {0:.2 f }" .format(backgroundPercent))

return foregroundPercent

#Calculated and outputs the data:ink ratio based on the computed pixel counts
def printDataToInkRatio(self ) :

inkCount = self .DIcount + self .NDIcount
if inkCount > 0:

dataPercent = self .DIcount / inkCount * 100.0
nonDataPercent = self.NDIcount / inkCount * 100.0

else:
dataPercent = −1.0 #no ink present in the plot
nonDataPercent = −1.0

print ( "data : ink = " , " {0:.2 f }" .format(dataPercent), " : " ,
" {0:.2 f } " .format(nonDataPercent))

#Calculates and outputs the number of different data pixels between plot sides
#Also saves the data per plot side and the differences as image
def printNumDifferences(self, printResult=True):

diffPixelArray = []
leftWidth = regions. plotLeft .width
rightWidth = regions.plotRight .width

leftPlot = self .DIimage[0:regions.plotLeft .height,
regions. plotLeft .x:regions. plotLeft .x + leftWidth ]

rightPlot = self .DIimage[0:regions.plotRight.height,
regions.plotRight .x:regions.plotRight .x + rightWidth ][:, ::−1]

io .imshow(leftPlot)
io .show()
io .imshow(rightPlot)
io .show()

io .imsave(fname="leftPlot.png", arr=img_as_ubyte(leftPlot))
io . imsave(fname="rightPlot.png", arr=img_as_ubyte(rightPlot))

#plot side differences can only be calculated on plot sides of same size
if leftPlot .shape[1] == rightPlot .shape[1]:

diffImage = np.zeros(( leftPlot .shape[0], rightPlot .shape[1], 3), dtype=np.uint8)
diffPixels = 0
equivPixels = 0
allPixels = leftPlot .shape[0] * leftPlot .shape[1]

#checks for differences in plot side data and writes them to a new image
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for w in range( leftPlot .shape[1]):
for h in range( leftPlot .shape[0]):

pixelL = leftPlot [h ][w]
pixelR = rightPlot [h ][w]
if np.array_equiv(pixelL, pixelR) :

equivPixels += 1
else:

diffPixels += 1
diffImage[h ][w] = [255, 255, 255]

io .imshow(diffImage)
io .show()
io .imsave(fname="diffPlots.png", arr=img_as_ubyte(diffImage))
if printResult :

print ( "Number of different pixels between plot sides: " , diffPixels )
print ( "Percent different pixels of amount pixels per plot side: " ,

" {0:.2 f } " .format( diffPixels / allPixels * 100), "%")
diffPixelArray .append(diffPixels)
diffPixelArray .append(allPixels)

else:
print ( "image widths don't match.")

return diffPixelArray

#create image containing color encoded regions for debugging:
# DATA −Red
# LI −Green
# NDI −Blue
# black pixels indicate background
def createAreaEncodedImage(self, encodedRegions):

image = np.zeros((self.height, self .width, 3))
for region in encodedRegions.regions:

for pixelw in range(region.width):
x = region.x + pixelw
for pixelh in range(region.height):

y = region.y + pixelh
pixel = image[y][x]
if DI in region.layers :

image[y][x] = [1, pixel [1], pixel [2]]
if LI in region.layers :

image[y][x] = [ pixel [0], 1, pixel [2]]
if NDI in region.layers :

image[y][x] = [ pixel [0], pixel [1], 1]

image_flipped = image[::−1, :]
image_flipped = 0.7 * img_as_float(self .originalImage) + 0.3 * img_as_float(image_flipped)
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io . imsave(fname="encodedRegions.png", arr=img_as_ubyte(image_flipped),
check_contrast=False)

return image[::−1, :]

#debugging: visualizes regions as overlay on top of the original
def showAreaEncoding(self):

placeholder = True
io .imshow(0.7 * img_as_float(self.originalImage) + 0.3 * img_as_float(self .encodedImage))
io .show()

#to take into account the smoothed rendering of text,
#check whether color is closer to text color or BG color
#the default factor 0.8 yielded overall best results for text recognition
def isText ( self , pixelColor , factor=0.8):

txt_squaredDist = np.sum((self.labelColor − pixelColor) ** 2, axis=0)
txt_dist = np.sqrt(txt_squaredDist)

if ( txt_dist < maxColorDist * factor) :
return True

else:
return False

#checks if the given color is the same as one of the defined data colors
def isData(self , pixelColor , factor=0.0):

minDist = maxColorDist
for color in self .dataColors:

data_squaredDist = np.sum((color − pixelColor)** 2, axis=0)
data_dist = np.sqrt(data_squaredDist)
if data_dist < minDist:

minDist = data_dist

if (minDist <= maxColorDist * factor) :
return True

else:
return False

#checks if the given pixel color is close enough to the BG color to be considered BG
def isBG(self, pixelColor , factor=0.2):

bg_squaredDist = np.sum((self.bgColor − pixelColor)** 2, axis=0)
bg_dist = np.sqrt(bg_squaredDist)

if (bg_dist <= maxColorDist * factor) :
return True

else:
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return False

#counts and marks the pixels per layer according to the layer priority
def countPixelsPerLayer(self, showImages=True):

original_flipped = self .originalImage [::−1, :]
white = [255, 255, 255]

for region in self .regions.regions:
for pixelw in range(region.width):

x = region.x + pixelw
for pixelh in range(region.height):

isDI = False
isNDI = False
isBG = False

y = region.y + pixelh
pixel = original_flipped [y ][ x]

if np.array_equiv(pixel , self .bgColor) or not region.layers :
isBG = True

elif DI in region.layers :
numdatapixels = 0
if LI in region.layers :

#check for labels in data region
if self . isText ( pixel , 0.8) :

isNDI = True
# if label close to data, its probably covered up and therefore,

pixels count to data
for ky in range(−1, 1):

kypos = y + ky
if kypos > 0 and kypos < self.height:

for kx in range(−2, 2):
kxpos = x + kx
if kxpos > 0 and kxpos < self.width:

kpixel = original_flipped [kypos][kxpos]
if self . isData(kpixel , 0.0) :

isNDI = False
break

#smoothing of labels should be counted to bg not to data
elif self . isData(pixel , 0.2) :

isDI = True
for ky in range(−1, 1):

kypos = y + ky
if kypos > 0 and kypos < self.height:
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for kx in range(−2, 2):
kxpos = x + kx
if kxpos > 0 and kxpos < self.width:

kpixel = original_flipped [kypos][kxpos]
if self . isBG(kpixel, 0.0) :

isBG = True
isDI = False

else:
isBG = True

if NDI in region.layers :
for color in self .gridColors:

if np.array_equiv(color, pixel ) :
isNDI = True

if not (isNDI or isBG):
isDI = True

elif NDI in region.layers :
index = 0
for color in self .gridColors:

if np.array_equiv(color, pixel ) :
isNDI = True
break

index += 1

elif LI in region.layers :
if self . isText ( pixel , 0.8) :

isNDI = True
else:

isBG = True

if isDI :
self .DIimage[y][x] = white
self .DIcount += 1

elif isNDI:
self .NDIimage[y][x] = white
self .NDIcount += 1

elif isBG:
self .BGimage[y][x] = white
self .BGcount += 1

#clean up falsely assumed grid pixels
self .cleanGridPixels()
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#debug print pixels of assigned layers
self .DIimage = self.DIimage[::−1, :]
io . imsave(fname="countedDI.png", arr=img_as_ubyte(self.DIimage), check_contrast=False)
self .NDIimage = self.NDIimage[::−1, :]
io . imsave(fname="countedNDI.png", arr=img_as_ubyte(self.NDIimage),

check_contrast=False)
self .BGimage = self.BGimage[::−1, :]
io . imsave(fname="countedBG.png", arr=img_as_ubyte(self.BGimage), check_contrast=False)

#make sure all pixels were assigned to a corresponding layer
diffCount = ( self .width * self .height) − ( self .DIcount + self .NDIcount + self.BGcount)
if diffCount != 0:

print ( "Counts differ by " , diffCount)
else:

print ( "Image size of original and calculated match.")

#debug show the images encoding which pixels belong to which layer
if showImages:

fig , axes = plt .subplots(nrows=1, ncols=3, figsize=(50, 10))
fig . suptitle ( ' Image regions:', size=30)
axes[0].imshow(self.DIimage)
axes[0]. set_title ( 'Data layer ' , size=25)
axes[0].axis( ' off ' )

axes[1].imshow(self.NDIimage)
axes[1]. set_title ( 'Grids&Labels layer', size=25)
axes[1].axis( ' off ' )

axes[2].imshow(self.BGimage)
axes[2]. set_title ( 'Background layer', size=25)
axes[2].axis( ' off ' )
plt .show()

#to account for some falsely detected grid pixels , iterate the generated NDI image and detect
loose pixels marked as grid. If they have no direct grid connection on either side, they are
marked DI

def cleanGridPixels(self ) :
white = [255, 255, 255]
correctedPixelsImage = np.zeros((self.height, self .width, 3), dtype=np.uint8)
flippedRegionImage = self.encodedImage[::−1, :]

for x in range(self .width) :
for y in range(self .height) :

pixel = self .NDIimage[y][x]
numGridPixels = 0
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#only if region can contain DI
if np.array_equiv(pixel , white) and flippedRegionImage[y][x][0] == 1.0:

#top
if y < self .height − 1:

if np.array_equiv(self .NDIimage[y + 1][x], white) :
numGridPixels += 1

#bottom
if y > 0:

if np.array_equiv(self .NDIimage[y − 1][x], white) :
numGridPixels += 1

#right
if x < self .width − 1:

if np.array_equiv(self .NDIimage[y][x + 1], white) :
numGridPixels += 1

# left
if x > 0:

if np.array_equiv(self .NDIimage[y][x − 1], white) :
numGridPixels += 1

if numGridPixels == 0:
self .NDIcount −= 1
self .DIcount += 1
correctedPixelsImage[y][x] = white

self .NDIimage = self.NDIimage − correctedPixelsImage
self .DIimage = self.DIimage + correctedPixelsImage

#debug checks whether every pixel was assigned to a layer
def checkRegionCompleteness(self):

completenessImage = img_as_ubyte(self.DIimage + self.NDIimage + self.BGimage)

numCountedPixels = 0
for x in range(self .width) :

for y in range(self .height) :
if np.array_equiv(completenessImage[y][x], [255, 255, 255]):

numCountedPixels += 1

completeness = numCountedPixels / (self.width * self.height) * 100
title = "% of pixels assigned: " + str (completeness)

if completeness != 100.0:
fig = plt . figure ()
fig . suptitle ( title )
plt . imshow(completenessImage)
plt .show()
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io . imsave(fname="completenessImage.png", arr=img_as_ubyte(completenessImage),
check_contrast=False)

#else:
print ( title )

#Matrix support
#Creates VisualizationEvaluations based on the given dimension, with the size of the given regions

FG:BG is calculated for the whole image, while data:ink and different Pixels between plot sides
are calculated per v−plot and then computed using the arithmetic mean

class MatrixEvaluation:
def __init__( self , original , regions, leftRegion, bottomRegion, dimPlots=3, labelColor=[0, 0, 0],

gridColors=[[229, 229, 229], [206, 206, 206]],
backgroundColor=[255, 255, 255],
dataColors=[[238, 238, 238], [170, 170, 170]]) :

self .width = original .shape[1]
self .height = original .shape[0]
self .count = self .width * self .height

self .dimPlots = dimPlots
self .plotWidth = regions.GetMatrixPlotWidth()
self .plotHeight = regions.GetMatrixPlotHeight()

#variable offset on the right of the view
self .defaultRightPadding = 4

#no leftLegend for individual plot regions
self .plotRegions = encodedImageRegion(regions.plotLeft, regions.plotRight,

regions.bottomLegend,
Region(0, 0, 0, 0, []) , regions.rightPadding,

regions.middleLegend)

# left legend is defined once for the matrix, not per v−plot
self . leftLegend = VisualizationEvaluation( original [0: leftRegion.leftLegend.height,

0:leftRegion.leftLegend.width ],
leftRegion, labelColor, gridColors,
backgroundColor, dataColors)

#bottom legend is defined once for the matrix, not per v−plot
plotYBegin = self .height − bottomRegion.bottomLegend.height
self .bottomLegend = VisualizationEvaluation(original[plotYBegin:

plotYBegin +
bottomRegion.bottomLegend.height,

0:bottomRegion.regions[2].width],
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bottomRegion, labelColor, gridColors,
backgroundColor, dataColors)

#empty/black images with size of the original
#to be filled with white pixels of the specified layer
self .DIimage = np.zeros((self.height, self .width, 3), dtype=np.uint8)
self .NDIimage = np.zeros((self.height, self .width, 3), dtype=np.uint8)
self .BGimage = np.zeros((self.height, self .width, 3), dtype=np.uint8)
regionImg = np.zeros((self .height, self .width, 3), dtype=' float ' )

#the individual VisualizationEvaluations are created therefore , the respective v−plot
positions are computed with reference to the matrix dimension and the defined Regions

self .vizEvaluations = []
xOffset = regions.regions [3]. width #leftlegend
vizIndex = 0
for w in range(dimPlots):

if w < dimPlots − 1:
offsetW = xOffset + w * self .plotWidth
endW = offsetW + self.plotWidth
for h in range(dimPlots):

if h < dimPlots − 1:
#adapt region encoding, to wherever we are in the image

offsetH = h * self .plotHeight
endH = offsetH + self . plotHeight
self .vizEvaluations.append(VisualizationEvaluation(original [offsetH:endH,

offsetW:endW],
self .plotRegions,
labelColor, gridColors,
backgroundColor,

dataColors))
io . imsave(fname="./defregions/defregion" + str(w) + str (h) + " .png",

arr=img_as_ubyte(self.vizEvaluations[vizIndex].encodedImage),
check_contrast=False)

#for debugging purpose do a region check: mark pixels that were assigned to
a plot white if a pixel gets wrongly assigned again, set its color to red

regionOffsetH = offsetH
regionOffsetW = offsetW
while regionOffsetH < endH:

regionOffsetW = offsetW
while regionOffsetW < endW:

if np.array_equiv(regionImg[regionOffsetH][regionOffsetW], [1, 1,
1]) :

regionImg[regionOffsetH][regionOffsetW] = [1, 0, 0]
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elif not np.array_equiv(regionImg[regionOffsetH][regionOffsetW], [1,
0, 0]) :
regionImg[regionOffsetH][regionOffsetW] = [1, 1, 1]

regionOffsetW += 1
regionOffsetH += 1

#append bottom legend to region check
yEnd = self.height
xEnd = bottomRegion.bottomLegend.x + bottomRegion.bottomLegend.width
y = self .height − bottomRegion.bottomLegend.height − 1
while y < yEnd:

x = bottomRegion.bottomLegend.x
while x < xEnd:

if np.array_equiv(regionImg[y][x], [1, 1, 1]) :
regionImg[y][x] = [1, 0, 0]

elif not np.array_equiv(regionImg[y][x], [1, 0, 0]) :
regionImg[y][x] = [1, 1, 1]

x += 1
y += 1

#append left legend to region check
yEnd = leftRegion.leftLegend.height
xEnd = leftRegion.leftLegend.width
y = 0
while y < yEnd:

x = 0
while x < xEnd:

if np.array_equiv(regionImg[y][x], [1, 1, 1]) :
regionImg[y][x] = [1, 0, 0]

elif not np.array_equiv(regionImg[y][x], [1, 0, 0]) :
regionImg[y][x] = [1, 1, 1]

x += 1
y += 1

print (regionImg.shape[0], regionImg.shape[1])
io . imshow(regionImg)
io .show()

#calls the showAreaEncoding function of the VisualizationEvaluation class per v−plot
def showAreaEncoding(self):

for vizIndex in range(len(self .vizEvaluations)) :
self .vizEvaluations[vizIndex ]. showAreaEncoding()

#calls the countPixelsPerLayer function of the VisualizationEvaluation class per v−plot. Marks
'empty' plots that occur through drawing only one diagonal of the matrix, as BG

def countPixelsPerLayer(self):
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#count for left and bottom legend, which are not per v−plot
self . leftLegend.countPixelsPerLayer(False)
self .bottomLegend.countPixelsPerLayer(False)

vizIndex = 0
for w in range(self .dimPlots):

for h in range(self .dimPlots):
if w == (self .dimPlots − 1):

plotWidth = self .plotRegions.GetMatrixPlotWidth(False) +
self.defaultRightPadding

currentPlotimageDI = np.zeros((self .plotHeight, plotWidth, 3), dtype=np.uint8)
currentPlotimageNDI = np.zeros((self.plotHeight, plotWidth, 3), dtype=np.uint8)
currentPlotimageBG = np.full(( self .plotHeight, plotWidth, 3), 255,

dtype=np.uint8)
elif h == (self .dimPlots − 1) :

currentPlotimageDI = np.zeros((self .plotHeight, self .plotWidth, 3),
dtype=np.uint8)

currentPlotimageNDI = np.zeros((self.plotHeight, self .plotWidth, 3),
dtype=np.uint8)

currentPlotimageBG = np.full(( self .plotHeight, self .plotWidth, 3), 255,
dtype=np.uint8)

else:
self .vizEvaluations[vizIndex ]. countPixelsPerLayer(False)

currentPlotimageDI = self.vizEvaluations[vizIndex ]. DIimage[:, ::−1]
currentPlotimageNDI = self.vizEvaluations[vizIndex ]. NDIimage[:, ::−1]
currentPlotimageBG = self.vizEvaluations[vizIndex].BGimage[:, ::−1]
vizIndex += 1

if h == 0: # first assignment of row
image_columnDI = currentPlotimageDI
image_columnNDI = currentPlotimageNDI
image_columnBG = currentPlotimageBG

else:
image_columnDI = np.concatenate((image_columnDI, currentPlotimageDI))
image_columnNDI = np.concatenate((image_columnNDI, currentPlotimageNDI))
image_columnBG = np.concatenate((image_columnBG, currentPlotimageBG))

if w == 0: # first assignment of column
self .DIimage = image_columnDI
self .NDIimage = image_columnNDI
self .BGimage = image_columnBG

else:
self .DIimage = np.concatenate((image_columnDI, self.DIimage), axis=1)
self .NDIimage = np.concatenate((image_columnNDI, self.NDIimage), axis=1)
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self .BGimage = np.concatenate((image_columnBG, self.BGimage), axis=1)

#append bottom and left legend
self .DIimage = np.concatenate((self.leftLegend.DIimage, self.DIimage[:, ::−1]) , axis=1)
self .NDIimage = np.concatenate((self.leftLegend.NDIimage, self.NDIimage[:, ::−1]), axis=1)
self .BGimage = np.concatenate((self.leftLegend.BGimage, self.BGimage[:, ::−1]), axis=1)

self .DIimage = np.concatenate((self.DIimage, self.bottomLegend.DIimage), axis=0)
self .NDIimage = np.concatenate((self.NDIimage, self.bottomLegend.NDIimage), axis=0)
self .BGimage = np.concatenate((self.BGimage, self.bottomLegend.BGimage), axis=0)

#debug save and show pixels of assigned layers
io .imsave(fname="countedDI.png", arr=img_as_ubyte(self.DIimage), check_contrast=False)
io .imsave(fname="countedNDI.png", arr=img_as_ubyte(self.NDIimage),

check_contrast=False)
io .imsave(fname="countedBG.png", arr=img_as_ubyte(self.BGimage), check_contrast=False)

fig , axes = plt .subplots(nrows=1, ncols=3, figsize=(50, 10))
fig . suptitle ( ' Image regions:', size=30)
axes[0].imshow(self.DIimage)
axes[0]. set_title ( 'Data layer ' , size=25)
axes[0].axis( ' off ' )

axes[1].imshow(self.NDIimage)
axes[1]. set_title ( 'Grids&Labels layer', size=25)
axes[1].axis( ' off ' )

axes[2].imshow(self.BGimage)
axes[2]. set_title ( 'Background layer', size=25)
axes[2].axis( ' off ' )
plt .show()

#debug check that every pixel was assigned to a region
def checkRegionCompleteness(self):

completenessImage = self.DIimage + self.NDIimage + self.BGimage

numCountedPixels = 0
for x in range(self .width) :

for y in range(self .height) :
if np.array_equiv(completenessImage[y][x], [255, 255, 255]):

numCountedPixels += 1

completeness = numCountedPixels / (self.width * self.height) * 100
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title = "% of pixels assigned: " + str (completeness)

if completeness != 100.0:
fig = plt . figure ()
fig . suptitle ( title )
plt . imshow(completenessImage)
plt .show()
io .imsave(fname="completenessImage.png", arr=img_as_ubyte(completenessImage),

check_contrast=False)
else:

print ( title )

#debug show the counts of all VisualizationEvaluations of the matrix
def getCounts(self):

for viz in self .vizEvaluations:
viz .getCounts()

self . leftLegend.getCounts()
self .bottomLegend.getCounts()

#show data to ink ratio as arithmetic mean of individual data:ink ratios
def printDataToInkRatio(self ) :

print ( "−−−−−−−−−DATA TO INK: ")
data = 0
other = 0
ink = 0
for viz in self .vizEvaluations:

data += viz.DIcount
other += viz.NDIcount

ink = data + other
if ink > 0:

dataPercent = data / ink * 100.0
nonDataPercent = other / ink * 100.0

else:
dataPercent = −1.0
nonDataPercent = −1.0

print ( "data : ink = " , " {0:.2 f }" .format(dataPercent), " : " ,
" {0:.2 f } " .format(nonDataPercent))

#show FG:BG ratio of the whole matrix image
def printFGBGRatio(self):

print ( "−−−−−−−−−FG TO BG: ")
fg = 0
bg = 0
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fg += self . leftLegend.DIcount
fg += self . leftLegend.NDIcount
bg += self . leftLegend.BGcount

fg += self .bottomLegend.DIcount
fg += self .bottomLegend.NDIcount
bg += self .bottomLegend.BGcount

for viz in self .vizEvaluations:
fg += viz.DIcount
fg += viz.NDIcount
bg += viz.BGcount

foregroundPercent = fg / self .count * 100.0
backgroundPercent = (self.count − fg) / self .count * 100.0
print ( "FG : BG = ", " {0:.2 f }" .format(foregroundPercent), ": " ,

" {0:.2 f }" .format(backgroundPercent))

#show the pixel differences of v−plot sides in % as arithmetic mean of individual v−plots
def printNumDifferences(self):

#print("−−−−−−−−−PLOT DIFFERENCES: ")
diffCount = 0
absCount = 0
numPlots = 0
for viz in self .vizEvaluations:

if viz .DIcount > 0:
differences = viz .printNumDifferences(False)
diffCount += differences[0]
absCount += differences[1]
numPlots += 1

if diffCount > 0:
print (diffCount , absCount)
print ( "Number of different pixels between plot sides (sum of all plot diffs ) : " ,

diffCount)
print ( "Percent different pixels of amount pixels per plot side (sum of all plot diff

%s): " ,
" {0:.2 f } " .format(diffCount / absCount * 100), "%")

else:
print ( "Number of different pixels between plot sides (sum of all plot diffs ) : " , −1.0)
print ( "Percent different pixels of amount pixels per plot side (sum of all plot diff

%s): " ,
# −1.0)
print ( self . results )
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A.4 Evaluation results table

Table 1: The calculated ratios of the test set as computed by the evaluation script.

numBins dimension complexity resolution (wxh) data % ink % FG % BG % diffPixels %

10 1 c0 100x160 41.03 58.97 21.32 78.67 13.62

10 1 c0 180x320 52.98 47.02 17.98 82.02 10.79

10 1 c0 360x640 69.57 30.43 13.54 86.46 9.37

10 1 c0 414x896 74.53 25.47 12.91 87.09 9.17

10 1 c0 1366x768 85.79 14.21 11.86 88.14 8.94

30 1 c0 100x160 17.05 82.95 16.53 83.47 5.71

30 1 c0 180x320 26.08 73.92 12.29 87.71 4.69

30 1 c0 360x640 41.98 58.02 7.68 92.32 4.26

30 1 c0 414x896 47.93 52.07 6.85 93.15 4.15

30 1 c0 1366x768 64.96 35.04 5.25 94.75 3.91

50 1 c0 100x160 11.78 88.22 15.66 84.34 4.12

50 1 c0 180x320 18.07 81.93 11.16 88.84 3.22

50 1 c0 360x640 30.68 69.32 6.48 93.52 2.87

50 1 c0 414x896 35.91 64.09 5.60 94.40 2.77

50 1 c0 1366x768 52.52 47.48 3.92 96.08 2.53

5 1 c0 100x160 56.24 43.76 26.52 73.47 17.91

5 1 c0 180x320 69.53 30.47 25.69 74.31 16.50

5 1 c0 360x640 83.06 16.94 22.51 77.49 16.07

5 1 c0 414x896 86.33 13.67 22.18 77.82 15.86

5 1 c0 1366x768 92.99 7.01 21.68 78.32 15.54

75 1 c0 100x160 9.03 90.97 15.23 84.77 3.28

75 1 c0 180x320 13.65 86.35 10.61 89.39 2.47

75 1 c0 360x640 23.27 76.73 5.87 94.13 2.10

75 1 c0 414x896 27.66 72.34 4.98 95.02 2.01

75 1 c0 1366x768 42.47 57.53 3.25 96.75 1.77

10 1 c1 100x160 46.27 53.73 23.11 76.89 16.01

10 1 c1 180x320 57.33 42.67 19.35 80.65 13.40

10 1 c1 360x640 72.19 27.81 14.82 85.18 11.59

10 1 c1 414x896 76.87 23.13 14.00 86.00 11.30

10 1 c1 1366x768 86.81 13.19 12.32 87.68 11.18

30 1 c1 100x160 30.73 69.27 19.02 80.98 9.50

30 1 c1 180x320 35.63 64.37 13.82 86.18 6.25
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30 1 c1 360x640 50.74 49.26 8.93 91.07 4.57

30 1 c1 414x896 55.57 44.43 7.90 92.10 4.43

30 1 c1 1366x768 67.89 32.11 5.64 94.36 4.20

50 1 c1 100x160 26.42 73.58 18.24 81.76 7.56

50 1 c1 180x320 28.65 71.35 12.61 87.39 4.58

50 1 c1 360x640 42.48 57.52 7.70 92.30 3.13

50 1 c1 414x896 47.12 52.88 6.69 93.31 2.97

50 1 c1 1366x768 56.88 43.12 4.27 95.73 2.73

5 1 c1 100x160 61.99 38.01 28.84 71.16 22.93

5 1 c1 180x320 72.65 27.35 26.95 73.05 20.88

5 1 c1 360x640 84.42 15.58 23.53 76.47 19.85

5 1 c1 414x896 87.59 12.41 22.99 77.01 19.57

5 1 c1 1366x768 93.61 6.39 22.22 77.78 19.84

75 1 c1 100x160 23.93 76.07 17.71 82.29 6.72

75 1 c1 180x320 25.15 74.85 12.05 87.95 3.80

75 1 c1 360x640 37.80 62.20 7.14 92.86 2.31

75 1 c1 414x896 41.43 58.57 6.06 93.94 2.15

75 1 c1 1366x768 48.35 51.65 3.59 96.41 1.87

10 1 c2 100x160 53.08 46.92 25.87 74.13 14.37

10 1 c2 180x320 66.77 33.23 23.80 76.20 10.94

10 1 c2 360x640 81.27 18.73 20.78 79.22 9.96

10 1 c2 414x896 84.55 15.45 20.13 79.87 9.84

10 1 c2 1366x768 91.78 8.22 18.76 81.24 9.73

30 1 c2 100x160 48.07 51.93 24.00 76.00 12.16

30 1 c2 180x320 61.40 38.60 21.14 78.86 9.52

30 1 c2 360x640 76.93 23.07 17.83 82.17 8.76

30 1 c2 414x896 80.78 19.22 17.05 82.95 8.60

30 1 c2 1366x768 89.48 10.52 15.39 84.61 8.27

50 1 c2 100x160 48.36 51.64 23.84 76.16 11.01

50 1 c2 180x320 60.86 39.14 20.80 79.20 8.93

50 1 c2 360x640 77.15 22.85 17.50 82.50 8.07

50 1 c2 414x896 80.89 19.11 16.72 83.28 7.91

50 1 c2 1366x768 89.20 10.80 14.99 85.01 7.72

5 1 c2 100x160 66.17 33.83 31.74 68.26 20.80

5 1 c2 180x320 78.07 21.93 31.89 68.11 18.12

5 1 c2 360x640 88.47 11.53 29.85 70.15 17.29
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5 1 c2 414x896 90.88 9.12 29.53 70.47 17.02

5 1 c2 1366x768 95.46 4.54 29.09 70.91 17.11

75 1 c2 100x160 48.26 51.74 23.72 76.28 10.82

75 1 c2 180x320 60.58 39.42 20.66 79.34 8.74

75 1 c2 360x640 76.86 23.14 17.37 82.63 7.81

75 1 c2 414x896 80.67 19.33 16.55 83.45 7.66

75 1 c2 1366x768 89.05 10.95 14.79 85.21 7.44

10 3 c0 100x160 100.00 0.00 4.43 95.57 6.86

10 3 c0 180x320 40.26 59.74 6.04 93.96 6.77

10 3 c0 360x640 43.86 56.14 6.88 93.12 7.05

10 3 c0 414x896 50.30 49.70 6.09 93.91 7.15

10 3 c0 1366x768 61.77 38.23 4.81 95.19 7.32

30 3 c0 100x160 100.00 0.00 3.62 96.38 2.70

30 3 c0 180x320 15.39 84.61 5.10 94.90 2.58

30 3 c0 360x640 17.34 82.66 5.43 94.57 2.74

30 3 c0 414x896 21.24 78.76 4.45 95.55 2.81

30 3 c0 1366x768 30.44 69.56 3.00 97.00 2.94

50 3 c0 100x160 100.00 0.00 3.51 96.49 1.47

50 3 c0 180x320 10.86 89.14 4.97 95.03 1.94

50 3 c0 360x640 11.99 88.01 5.23 94.77 2.02

50 3 c0 414x896 14.95 85.05 4.22 95.78 2.04

50 3 c0 1366x768 22.33 77.67 2.74 97.26 2.17

5 3 c0 100x160 100.00 0.00 5.51 94.49 9.80

5 3 c0 180x320 60.56 39.44 7.45 92.55 10.43

5 3 c0 360x640 64.90 35.10 9.00 91.00 10.70

5 3 c0 414x896 70.78 29.22 8.50 91.50 10.85

5 3 c0 1366x768 78.86 21.14 7.46 92.54 11.10

75 3 c0 100x160 100.00 0.00 3.39 96.61 1.10

75 3 c0 180x320 5.19 94.81 4.82 95.18 0.94

75 3 c0 360x640 6.14 93.86 5.02 94.98 1.10

75 3 c0 414x896 7.87 92.13 3.99 96.01 1.04

75 3 c0 1366x768 12.40 87.60 2.47 97.53 1.17

10 3 c1 100x160 100.00 0.00 5.58 94.42 15.32

10 3 c1 180x320 51.90 48.10 6.61 93.39 11.01

10 3 c1 360x640 49.24 50.76 7.02 92.98 9.79

10 3 c1 414x896 55.18 44.82 6.29 93.71 9.53
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10 3 c1 1366x768 64.65 35.35 4.89 95.11 9.20

30 3 c1 100x160 100.00 0.00 4.89 95.11 15.32

30 3 c1 180x320 31.14 68.86 5.67 94.33 7.02

30 3 c1 360x640 25.18 74.82 5.59 94.41 5.03

30 3 c1 414x896 28.96 71.04 4.59 95.41 4.09

30 3 c1 1366x768 34.85 65.15 3.07 96.93 3.39

50 3 c1 100x160 100.00 0.00 4.81 95.19 15.56

50 3 c1 180x320 27.18 72.82 5.53 94.47 6.26

50 3 c1 360x640 20.16 79.84 5.38 94.62 4.26

50 3 c1 414x896 23.06 76.94 4.34 95.66 3.32

50 3 c1 1366x768 27.49 72.51 2.82 97.18 2.57

5 3 c1 100x160 100.00 0.00 6.56 93.44 16.30

5 3 c1 180x320 67.22 32.78 7.96 92.04 14.06

5 3 c1 360x640 68.14 31.86 9.21 90.79 13.07

5 3 c1 414x896 73.11 26.89 8.71 91.29 13.34

5 3 c1 1366x768 80.19 19.81 7.55 92.45 13.48

75 3 c1 100x160 100.00 0.00 4.70 95.30 15.56

75 3 c1 180x320 22.95 77.05 5.36 94.64 5.41

75 3 c1 360x640 14.75 85.25 5.15 94.85 3.28

75 3 c1 414x896 16.79 83.21 4.10 95.90 2.25

75 3 c1 1366x768 17.69 82.31 2.53 97.47 1.47

10 3 c2 100x160 100.00 0.00 5.71 94.29 14.46

10 3 c2 180x320 58.76 41.24 7.08 92.92 10.47

10 3 c2 360x640 59.86 40.14 8.16 91.84 9.88

10 3 c2 414x896 65.85 34.15 7.55 92.45 9.39

10 3 c2 1366x768 76.03 23.97 6.53 93.47 9.09

30 3 c2 100x160 100.00 0.00 5.24 94.76 14.22

30 3 c2 180x320 50.28 49.72 6.65 93.35 8.51

30 3 c2 360x640 51.39 48.61 7.40 92.60 8.35

30 3 c2 414x896 57.41 42.59 6.64 93.36 7.61

30 3 c2 1366x768 68.79 31.21 5.54 94.46 7.37

50 3 c2 100x160 100.00 0.00 5.22 94.78 14.22

50 3 c2 180x320 49.57 50.43 6.61 93.39 8.29

50 3 c2 360x640 50.45 49.55 7.34 92.66 8.01

50 3 c2 414x896 56.48 43.52 6.56 93.44 7.25

50 3 c2 1366x768 68.05 31.95 5.45 94.55 6.96
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5 3 c2 100x160 100.00 0.00 6.66 93.34 15.44

5 3 c2 180x320 71.02 28.98 8.40 91.60 12.68

5 3 c2 360x640 73.50 26.50 10.26 89.74 12.09

5 3 c2 414x896 78.34 21.66 9.93 90.07 12.18

5 3 c2 1366x768 85.22 14.78 9.16 90.84 12.23

75 3 c2 100x160 100.00 0.00 5.19 94.81 14.83

75 3 c2 180x320 49.01 50.99 6.57 93.43 8.20

75 3 c2 360x640 49.77 50.23 7.29 92.71 7.72

75 3 c2 414x896 55.77 44.23 6.50 93.50 6.87

75 3 c2 1366x768 67.41 32.59 5.38 94.62 6.58

10 6 c0 100x160 100.00 0.00 3.49 96.51 7.31

10 6 c0 180x320 45.61 54.39 5.36 94.64 9.24

10 6 c0 360x640 36.30 63.70 7.38 92.62 9.65

10 6 c0 414x896 42.52 57.48 7.04 92.96 9.79

10 6 c0 1366x768 53.47 46.53 5.64 94.36 9.76

30 6 c0 100x160 100.00 0.00 2.94 97.06 2.69

30 6 c0 180x320 17.81 82.19 4.18 95.82 3.25

30 6 c0 360x640 13.20 86.80 6.06 93.94 3.51

30 6 c0 414x896 16.48 83.52 5.42 94.58 3.54

30 6 c0 1366x768 23.78 76.22 3.81 96.19 3.55

50 6 c0 100x160 100.00 0.00 2.88 97.12 2.56

50 6 c0 180x320 12.16 87.84 4.00 96.00 2.34

50 6 c0 360x640 9.08 90.92 5.87 94.13 2.47

50 6 c0 414x896 11.41 88.59 5.19 94.81 2.48

50 6 c0 1366x768 25.91 74.09 4.17 95.83 4.48

5 6 c0 100x160 100.00 0.00 4.38 95.62 14.74

5 6 c0 180x320 66.01 33.99 7.16 92.84 16.99

5 6 c0 360x640 57.42 42.58 9.37 90.63 17.37

5 6 c0 414x896 63.74 36.26 9.40 90.60 17.51

5 6 c0 1366x768 72.45 27.55 8.34 91.66 17.50

75 6 c0 100x160 100.00 0.00 2.76 97.24 0.92

75 6 c0 180x320 6.14 93.86 3.84 96.16 1.20

75 6 c0 360x640 4.51 95.49 5.69 94.31 1.26

75 6 c0 414x896 5.77 94.23 4.97 95.03 1.26

75 6 c0 1366x768 9.13 90.87 3.29 96.71 1.28

10 6 c1 100x160 100.00 0.00 4.98 95.03 16.15
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10 6 c1 180x320 60.55 39.45 6.29 93.71 13.96

10 6 c1 360x640 43.29 56.71 7.59 92.41 12.87

10 6 c1 414x896 49.64 50.36 7.28 92.72 12.85

10 6 c1 1366x768 56.63 43.37 5.79 94.21 12.32

30 6 c1 100x160 100.00 0.00 4.49 95.51 13.33

30 6 c1 180x320 41.53 58.47 5.26 94.74 9.26

30 6 c1 360x640 22.32 77.68 6.29 93.71 5.91

30 6 c1 414x896 25.40 74.60 5.61 94.39 5.47

30 6 c1 1366x768 28.40 71.60 3.99 96.01 4.36

50 6 c1 100x160 100.00 0.00 4.46 95.54 13.33

50 6 c1 180x320 37.98 62.02 5.10 94.90 8.25

50 6 c1 360x640 18.26 81.74 6.06 93.94 4.73

50 6 c1 414x896 20.79 79.21 5.37 94.63 4.30

50 6 c1 1366x768 21.96 78.04 3.71 96.29 3.20

5 6 c1 100x160 100.00 0.00 5.70 94.30 22.31

5 6 c1 180x320 74.17 25.83 7.96 92.04 20.86

5 6 c1 360x640 62.22 37.78 9.76 90.24 22.23

5 6 c1 414x896 67.58 32.42 9.71 90.29 22.05

5 6 c1 1366x768 74.12 25.88 8.55 91.45 21.85

75 6 c1 100x160 100.00 0.00 4.44 95.56 13.85

75 6 c1 180x320 34.06 65.94 4.89 95.11 7.12

75 6 c1 360x640 13.93 86.07 5.85 94.15 3.53

75 6 c1 414x896 15.39 84.61 5.11 94.89 3.06

75 6 c1 1366x768 14.64 85.36 3.44 96.56 1.88

10 6 c2 100x160 100.00 0.00 5.01 94.99 15.77

10 6 c2 180x320 65.57 34.43 6.77 93.23 13.77

10 6 c2 360x640 51.74 48.26 8.50 91.50 13.02

10 6 c2 414x896 58.96 41.04 8.38 91.62 13.20

10 6 c2 1366x768 68.68 31.32 7.37 92.63 13.16

30 6 c2 100x160 100.00 0.00 4.54 95.46 12.95

30 6 c2 180x320 57.27 42.73 6.19 93.81 10.94

30 6 c2 360x640 41.74 58.26 7.81 92.19 10.01

30 6 c2 414x896 49.69 50.31 7.46 92.54 9.98

30 6 c2 1366x768 60.46 39.54 6.37 93.63 9.70

50 6 c2 100x160 100.00 0.00 4.54 95.46 13.08

50 6 c2 180x320 56.50 43.50 6.14 93.86 10.56
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50 6 c2 360x640 40.49 59.51 7.71 92.29 9.27

50 6 c2 414x896 48.83 51.17 7.37 92.63 9.41

50 6 c2 1366x768 59.62 40.38 6.26 93.74 9.15

5 6 c2 100x160 100.00 0.00 5.78 94.23 21.28

5 6 c2 180x320 77.07 22.93 8.45 91.55 20.07

5 6 c2 360x640 67.51 32.49 10.61 89.39 21.33

5 6 c2 414x896 73.17 26.83 10.83 89.17 21.36

5 6 c2 1366x768 80.05 19.95 10.17 89.83 21.59

75 6 c2 100x160 100.00 0.00 4.52 95.48 13.46

75 6 c2 180x320 55.99 44.01 6.08 93.92 10.37

75 6 c2 360x640 39.37 60.63 7.66 92.34 8.82

75 6 c2 414x896 47.75 52.25 7.29 92.71 8.93

75 6 c2 1366x768 58.84 41.16 6.17 93.83 8.57

10 10 c0 100x160 100.00 0.00 3.28 96.72 6.84

10 10 c0 180x320 100.00 0.00 2.75 97.25 7.83

10 10 c0 360x640 59.96 40.04 5.39 94.61 8.57

10 10 c0 414x896 38.33 61.67 8.85 91.15 8.37

10 10 c0 1366x768 54.26 45.74 7.05 92.95 8.50

30 10 c0 100x160 100.00 0.00 2.92 97.08 2.63

30 10 c0 180x320 100.00 0.00 1.33 98.67 3.11

30 10 c0 360x640 28.70 71.30 3.44 96.56 3.60

30 10 c0 414x896 14.11 85.89 7.12 92.88 3.51

30 10 c0 1366x768 24.17 75.83 4.75 95.25 3.59

50 10 c0 100x160 100.00 0.00 2.79 97.21 1.75

50 10 c0 180x320 100.00 0.00 1.12 98.88 2.24

50 10 c0 360x640 20.39 79.61 3.14 96.86 2.62

50 10 c0 414x896 9.66 90.34 6.88 93.12 2.55

50 10 c0 1366x768 17.34 82.66 4.43 95.57 2.62

5 10 c0 100x160 100.00 0.00 3.98 96.02 15.26

5 10 c0 180x320 100.00 0.00 4.80 95.20 14.56

5 10 c0 360x640 77.45 22.55 8.29 91.71 15.67

5 10 c0 414x896 59.85 40.15 11.36 88.64 15.25

5 10 c0 1366x768 73.59 26.41 10.43 89.57 15.47

75 10 c0 100x160 100.00 0.00 2.79 97.21 1.75

75 10 c0 180x320 100.00 0.00 0.94 99.06 1.22

75 10 c0 360x640 10.80 89.20 2.87 97.13 1.28
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75 10 c0 414x896 4.86 95.14 6.65 93.35 1.29

75 10 c0 1366x768 9.27 90.73 4.10 95.90 1.35

10 10 c1 100x160 100.00 0.00 5.31 94.69 20.18

10 10 c1 180x320 100.00 0.00 4.39 95.61 13.50

10 10 c1 360x640 68.69 31.31 6.14 93.86 11.78

10 10 c1 414x896 46.53 53.47 9.18 90.82 11.50

10 10 c1 1366x768 58.63 41.37 7.18 92.82 10.70

30 10 c1 100x160 100.00 0.00 5.05 94.95 23.51

30 10 c1 180x320 100.00 0.00 3.11 96.89 11.31

30 10 c1 360x640 44.68 55.32 4.23 95.77 6.32

30 10 c1 414x896 24.44 75.56 7.38 92.62 5.74

30 10 c1 1366x768 29.40 70.60 4.89 95.11 4.41

50 10 c1 100x160 100.00 0.00 4.98 95.03 25.61

50 10 c1 180x320 100.00 0.00 2.86 97.14 10.80

50 10 c1 360x640 39.91 60.09 3.97 96.03 5.25

50 10 c1 414x896 20.16 79.84 7.11 92.89 4.75

50 10 c1 1366x768 22.85 77.15 4.55 95.45 3.35

5 10 c1 100x160 100.00 0.00 5.79 94.21 21.23

5 10 c1 180x320 100.00 0.00 6.20 93.80 20.45

5 10 c1 360x640 81.86 18.14 9.02 90.98 19.95

5 10 c1 414x896 64.32 35.68 11.72 88.28 19.64

5 10 c1 1366x768 76.07 23.93 10.61 89.39 19.34

75 10 c1 100x160 100.00 0.00 4.92 95.08 27.02

75 10 c1 180x320 100.00 0.00 2.65 97.35 9.79

75 10 c1 360x640 33.30 66.70 3.65 96.35 4.12

75 10 c1 414x896 15.79 84.21 6.85 93.15 3.58

75 10 c1 1366x768 15.04 84.96 4.20 95.80 1.98

10 10 c2 100x160 100.00 0.00 5.38 94.62 19.82

10 10 c2 180x320 100.00 0.00 4.73 95.27 13.62

10 10 c2 360x640 75.19 24.81 7.14 92.86 12.27

10 10 c2 414x896 54.64 45.36 10.19 89.81 12.00

10 10 c2 1366x768 68.19 31.81 8.70 91.30 11.55

30 10 c2 100x160 100.00 0.00 5.05 94.95 23.51

30 10 c2 180x320 100.00 0.00 3.82 96.18 11.89

30 10 c2 360x640 65.49 34.51 5.90 94.10 9.57

30 10 c2 414x896 43.70 56.30 9.03 90.97 9.29
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30 10 c2 1366x768 57.75 42.25 7.20 92.80 8.66

50 10 c2 100x160 100.00 0.00 4.99 95.01 25.09

50 10 c2 180x320 100.00 0.00 3.73 96.27 11.58

50 10 c2 360x640 64.73 35.27 5.80 94.20 8.99

50 10 c2 414x896 42.59 57.41 8.92 91.08 8.67

50 10 c2 1366x768 56.72 43.28 7.06 92.94 8.08

5 10 c2 100x160 100.00 0.00 5.89 94.11 18.60

5 10 c2 180x320 100.00 0.00 6.63 93.37 19.62

5 10 c2 360x640 84.97 15.03 10.06 89.94 19.33

5 10 c2 414x896 69.84 30.16 12.80 87.20 19.11

5 10 c2 1366x768 80.38 19.62 12.25 87.75 18.78

75 10 c2 100x160 100.00 0.00 4.93 95.07 26.84

75 10 c2 180x320 100.00 0.00 3.68 96.32 11.08

75 10 c2 360x640 63.84 36.16 5.69 94.31 8.64

75 10 c2 414x896 41.61 58.39 8.83 91.17 8.31

75 10 c2 1366x768 55.70 44.30 6.93 93.07 7.46

10 15 c0 100x160 100.00 0.00 3.15 96.85 4.94

10 15 c0 180x320 100.00 0.00 2.61 97.39 8.53

10 15 c0 360x640 54.57 45.43 5.89 94.11 10.82

10 15 c0 414x896 64.04 35.96 5.34 94.66 10.36

10 15 c0 1366x768 49.54 50.46 7.93 92.07 10.71

30 15 c0 100x160 100.00 0.00 2.81 97.19 1.85

30 15 c0 180x320 100.00 0.00 1.28 98.72 3.21

30 15 c0 360x640 24.18 75.82 3.96 96.04 4.19

30 15 c0 414x896 32.20 67.80 3.19 96.81 4.03

30 15 c0 1366x768 20.84 79.16 5.62 94.38 4.17

50 15 c0 100x160 100.00 0.00 2.78 97.22 1.85

50 15 c0 180x320 100.00 0.00 1.09 98.91 2.26

50 15 c0 360x640 17.22 82.78 3.70 96.30 2.97

50 15 c0 414x896 23.58 76.42 2.88 97.12 2.85

50 15 c0 1366x768 14.81 85.19 5.31 94.69 2.95

5 15 c0 100x160 100.00 0.00 3.57 96.43 8.15

5 15 c0 180x320 100.00 0.00 4.47 95.53 13.10

5 15 c0 360x640 73.62 26.38 8.76 91.24 16.75

5 15 c0 414x896 80.65 19.35 8.55 91.45 16.18

5 15 c0 1366x768 70.08 29.92 11.36 88.64 16.57
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75 15 c0 100x160 -1.00 -1.00 2.77 97.22 -1.00

75 15 c0 180x320 100.00 0.00 0.90 99.10 1.10

75 15 c0 360x640 8.95 91.05 3.42 96.58 1.48

75 15 c0 414x896 12.95 87.05 2.58 97.42 1.45

75 15 c0 1366x768 7.72 92.28 4.98 95.02 1.50

10 15 c1 100x160 100.00 0.00 5.28 94.72 16.67

10 15 c1 180x320 100.00 0.00 4.46 95.54 15.18

10 15 c1 360x640 65.47 34.53 6.83 93.17 15.04

10 15 c1 414x896 72.27 27.73 6.14 93.86 13.89

10 15 c1 1366x768 54.48 45.52 8.11 91.89 13.05

30 15 c1 100x160 100.00 0.00 5.08 94.92 19.63

30 15 c1 180x320 100.00 0.00 3.36 96.64 12.97

30 15 c1 360x640 42.95 57.05 4.95 95.05 7.86

30 15 c1 414x896 49.45 50.55 4.06 95.94 6.70

30 15 c1 1366x768 26.50 73.50 5.80 94.20 5.18

50 15 c1 100x160 100.00 0.00 5.04 94.96 20.37

50 15 c1 180x320 100.00 0.00 3.18 96.82 12.44

50 15 c1 360x640 38.46 61.54 4.67 95.33 6.59

50 15 c1 414x896 44.14 55.86 3.75 96.25 5.37

50 15 c1 1366x768 20.59 79.41 5.46 94.54 3.88

5 15 c1 100x160 100.00 0.00 5.57 94.43 15.19

5 15 c1 180x320 100.00 0.00 6.14 93.86 18.24

5 15 c1 360x640 79.27 20.73 9.64 90.36 21.19

5 15 c1 414x896 84.32 15.68 9.22 90.78 19.84

5 15 c1 1366x768 72.28 27.72 11.43 88.57 19.72

75 15 c1 100x160 100.00 0.00 5.01 94.99 21.11

75 15 c1 180x320 100.00 0.00 3.07 96.93 12.33

75 15 c1 360x640 33.00 67.00 4.38 95.62 5.25

75 15 c1 414x896 37.55 62.45 3.42 96.58 4.11

75 15 c1 1366x768 13.66 86.34 5.10 94.90 2.32

10 15 c2 100x160 100.00 0.00 5.33 94.67 15.80

10 15 c2 180x320 100.00 0.00 4.73 95.27 14.95

10 15 c2 360x640 72.34 27.66 7.92 92.08 16.74

10 15 c2 414x896 79.07 20.93 7.50 92.50 15.93

10 15 c2 1366x768 65.51 34.49 9.90 90.10 15.80

30 15 c2 100x160 100.00 0.00 5.08 94.92 19.63
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30 15 c2 180x320 100.00 0.00 3.98 96.02 13.83

30 15 c2 360x640 63.68 36.32 6.81 93.19 13.17

30 15 c2 414x896 71.45 28.55 6.24 93.76 12.37

30 15 c2 1366x768 56.12 43.88 8.54 91.46 12.01

50 15 c2 100x160 100.00 0.00 5.08 94.92 19.75

50 15 c2 180x320 100.00 0.00 3.90 96.10 13.60

50 15 c2 360x640 62.92 37.08 6.70 93.30 12.51

50 15 c2 414x896 70.67 29.33 6.12 93.88 11.65

50 15 c2 1366x768 55.11 44.89 8.39 91.61 11.30

5 15 c2 100x160 100.00 0.00 5.65 94.35 13.58

5 15 c2 180x320 100.00 0.00 6.42 93.58 17.51

5 15 c2 360x640 82.51 17.49 10.66 89.34 21.08

5 15 c2 414x896 87.33 12.67 10.54 89.46 20.27

5 15 c2 1366x768 77.62 22.38 13.27 86.73 20.41

75 15 c2 100x160 100.00 0.00 5.01 94.99 20.99

75 15 c2 180x320 100.00 0.00 3.86 96.14 13.83

75 15 c2 360x640 61.94 38.06 6.58 93.42 11.98

75 15 c2 414x896 69.76 30.24 5.98 94.02 11.14

75 15 c2 1366x768 53.94 46.06 8.24 91.76 10.48
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A.5 T-test results of the discriminability ratio

Contains the p-values that resulted from the various performed t-tests for the discriminability
between plot sides as ratio. These results are documented in the form of tables per catego-
rization. The related hypotheses of the t-tests were discussed in subsection 5.0.2. The span of
the cells containing the p-values indicate which test set pairing it belongs to. Meaning the left
border of a cell marks the first test set used in the pairing and the right border of the cell resides
in the column of the second test set. Green highlighted cells mark p-values smaller than the
significance level α = 0.05. The tables were all generated using Microsoft Excel [53].

A.5.1 Dimensionality

Figure 34: The results of various t-tests conducted on the measured discriminability ratio of v-plots of
dimensionality 1 (single v-plots). No significant changes can be seen among the tested pair-
ings.
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Figure 35: The results of various t-tests conducted on the measured discriminability ratio of v-plots of
dimensionality 3. Several significant changes can be seen among tested pairs, resembling
the the test results of the t-tests conducted on the test sets that use no further filtering (see
Figure 32).

Figure 36: The results of various t-tests conducted on the measured discriminability ratio of v-plots of
dimensionality 4. No significant changes can be seen among the tested pairings.
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Figure 37: The results of various t-tests conducted on the measured discriminability ratio of v-plots of
dimensionality 5. Several significant changes can be seen among tested pairs, resembling
the the test results of the t-tests conducted on the test groups that use no further filtering.

Figure 38: The results of various t-tests conducted on the measured discriminability ratio of v-plots of
dimensionality 6. No significant changes can be seen among the tested pairings.
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A.5.2 Complexity

Figure 39: The results of various t-tests conducted on the measured discriminability ratio of v-plots using
various complexities. From top to bottom: C0: No significant changes can be seen among
the tested pairings. C1 and C2: Significant changes can be seen between some of the
pairings, similar to the changes appearing in pairings of the whole test data set (see Figure
32).
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A.5.3 Bin count

Figure 40: The results of various t-tests conducted on the measured discriminability ratio of v-plots using
bin count 5.

Figure 41: The results of various t-tests conducted on the measured discriminability ratio of v-plots using
bin count 10. Various significant changes can be seen in pairings involving the smallest tested
resolution.
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Figure 42: The results of various t-tests conducted on the measured discriminability ratio of v-plots using
bin count 30. A significant change can only be seen between the smallest and the largest
tested resolution.

Figure 43: The results of various t-tests conducted on the measured discriminability ratio of v-plots using
bin count 50. No significant changes can be seen among the tested pairings.
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Figure 44: The results of various t-tests conducted on the measured discriminability ratio of v-plots using
bin count 75. A significant change can only be seen between the smallest and the largest
tested resolution.

A.6 Ratio results visualized

Several visual representations of the calculated ratios are contained in this section, sorted by
their corresponding ratios. These visualizations were generated using Tableau [71].
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A.6.1 Data-ink ratio

Figure 45: Shows the calculated data-ink ratio over time, categorized by dimensionality. Each plot con-
tains 15 lines, being the result of different configurations (5 different bin sizes, 3 different
complexities). Generally, a slight increase over growing resolutions can be seen in all plots.
Deviations happen in v-plots with higher dimensionality, caused either by the scaling of the
grid or the loss of ink. The mapping is fixed across plots.
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Figure 46: Shows the calculated data-ink ratio over time, categorized by complexity. The mapping is not
fixed across plots. Top left: c0 (green). Top right: c1 (orange). Bottom left: c2 (blue).
Bottom right: All configurations, colored by complexity. A higher complexity generally leads
to a higher data-ink ratio.
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Figure 47: Shows the calculated data-ink ratio over time, categorized by bin count. Each plot contains
15 lines, being the result of different configurations (5 different dimensions, 3 different com-
plexities). It shows that with a smaller bin count the data-ink ratio generally increases. The
mapping is fixed across plots.
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A.6.2 Foreground-background ratio

Figure 48: Shows the calculated FG:BG ratio over time, categorized by dimensionality. Each plot con-
tains 15 lines, being the result of different configurations (5 different bin sizes, 3 different
complexities). Single v-plots (dimensionality 1) can be seen to generally have a wider spread,
reaching higher values. The mapping is fixed across plots.
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Figure 49: Shows the calculated FG:BG ratio over time, categorized by complexity. Top left: c0 (green).
Top right: c1 (orange). Bottom left: c2 (blue). Bottom right: All configurations, colored by
complexity. A higher complexity generally leads to a higher FG:BG ratio. The mapping is not
fixed across plots.
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Figure 50: Shows the calculated FG:BG ratio over time, categorized by bin count. Each plot contains
15 lines, being the result of different configurations (5 different dimensions, 3 different com-
plexities). It shows that with a smaller bin count the FG:BG ratio generally increases. The
mapping is fixed across plots.
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A.6.3 Discriminability ratio

Figure 51: Shows the calculated discriminability ratio over time, categorized by dimensionality. Each plot
contains 15 lines, being the result of different configurations (5 different bin sizes, 3 different
complexities). The mapping is fixed across plots.
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Figure 52: Shows the calculated discriminability ratio over time, categorized by complexity. Top left: c0
(green). Top right: c1 (orange). Bottom left: c2 (blue). Bottom right: All configurations,
colored by complexity. The mapping is not fixed across plots.
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Figure 53: Shows the calculated discriminability ratio over time, categorized by bin count. Each plot con-
tains 15 lines, being the result of different configurations (5 different dimensions, 3 different
complexities). The mapping is fixed across plots.

129


	Introduction
	Data visualization
	Visual analytics
	Visual comparison

	Visualization techniques
	Data distribution visualization techniques
	Histograms
	Density plots
	Box plots

	Hybrid charts
	V-plots
	The v-plot matrix
	V-plot example use cases


	Evaluating data visualizations
	Related work
	Measuring visual scalability
	Visual saliency models
	Data to Ink ratio
	Discriminability tests

	V-plot matrix scalability evaluation

	Implementation
	V-plot matrix implementation
	Visplore by VRVis
	Implementation steps
	Implemented changes

	Evaluation script implementation
	Requirements
	Concepts for the computation logic
	Implementation


	Evaluation
	Evaluation setting
	Results
	Interpreting the ratios

	Conclusion
	Contributions
	Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix
	Photovoltaic (PV) Solar Panel Energy Generation data
	The v-plot implementation in Visplore by VRVis
	Evaluation script
	Evaluation results table
	T-test results of the discriminability ratio
	Dimensionality
	Complexity
	Bin count

	Ratio results visualized
	Data-ink ratio
	Foreground-background ratio
	Discriminability ratio



		2022-05-05T23:45:39+0200
	Nadine Virginia BÃ¼sch




